4,275 research outputs found

    Numerical Study of Wave Propagation in Uniaxially Anisotropic Lorentzian Backward Wave Slabs

    Full text link
    The propagation and refraction of a cylindrical wave created by a line current through a slab of backward wave medium, also called left-handed medium, is numerically studied with FDTD. The slab is assumed to be uniaxially anisotropic. Several sets of constitutive parameters are considered and comparisons with theoretical results are made. Electric field distributions are studied inside and behind the slab. It is found that the shape of the wavefronts and the regions of real and complex wave vectors are in agreement with theoretical results.Comment: 6 pages, figure

    Where Are Be/black-hole Binaries?

    Full text link
    We apply the tidal truncation model proposed by Negueruela & Okazaki(2001) to arbitrary Be/compact star binaries to study the truncation efficiency dependance on the binary parameters. We find that the viscous decretion disks around the Be stars could be truncated very effectively in narrow systems. Combining this with the population synthesis results of Podsiadlowski, Rappaport and Han (2003) that binary black holes are most likely to be born in systems with orbital periods less than about 30 days, we suggest that most of the Be/black-hole binaries may be transient systems with very long quiescent states. This could explain the lack of observed Be/black-hole X-ray binaries. We also discuss the evolution of the Be/black-hole binaries and their possible observational features.Comment: 14 pages,3 figures, ApJ accepte

    Self-induced charge currents in electromagnetic materials, photon effective rest mass and some related topics

    Full text link
    The contribution of self-induced charge currents of metamaterial media to photon effective rest mass is discussed in detail in the present paper. We concern ourselves with two kinds of photon effective rest mass, i.e., the frequency-dependent and frequency-independent effective rest mass. Based on these two definitions, we calculate the photon effective rest mass in the left-handed medium and the 2TDLM media, the latter of which is described by the so-called two time derivative Lorentz material (2TDLM) model. Additionally, we concentrate primarily on the torque, which is caused by the interaction between self-induced charge currents in dilute plasma (e.g., the secondary cosmic rays) and interstellar magnetic fields (ambient cosmic magnetic vector potentials), acting on the torsion balance of the rotating torsion balance experiment.Comment: 11 pages, Late

    Habitat‐dependent occupancy and movement in a migrant songbird highlights the importance of mangroves and forested lagoons in Panama and Colombia

    Get PDF
    Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea‐level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species. Little is known about the ecology of nonterritorial species that may display more complex movement patterns within and among habitats of differing quality. In this study, we assess within‐season survival and movement at two spatio‐temporal scales of a nonterritorial overwintering bird, the prothonotary warbler (Protonotaria citrea), that depends on mangroves and tropical lowland forests. Specifically, we (a) estimated within‐patch survival and persistence over a six‐week period using radio‐tagged birds in central Panama and (b) modeled abundance and occupancy dynamics at survey points throughout eastern Panama and northern Colombia as the dry season progressed. We found that site persistence was highest in mangroves; however, the probability of survival did not differ among habitats. The probability of warbler occupancy increased with canopy cover, and wet habitats were least likely to experience local extinction as the dry season progressed. We also found that warbler abundance is highest in forests with the tallest canopies. This study is one of the first to demonstrate habitat‐dependent occupancy and movement in a nonterritorial overwintering migrant songbird, and our findings highlight the need to conserve intact, mature mangrove, and lowland forests

    On the Localization of One-Photon States

    Get PDF
    Single photon states with arbitrarily fast asymptotic power-law fall-off of energy density and photodetection rate are explicitly constructed. This goes beyond the recently discovered tenth power-law of the Hellwarth-Nouchi photon which itself superseded the long-standing seventh power-law of the Amrein photon.Comment: 7 pages, tex, no figure

    Transformation Optics for Plasmonics

    Full text link
    A new strategy to control the flow of surface plasmon polaritons at metallic surfaces is presented. It is based on the application of the concept of Transformation Optics to devise the optical parameters of the dielectric medium placed on top of the metal surface. We describe the general methodology for the design of Transformation-Optical devices for surface plasmons and analyze, for proof-of-principle purposes, three representative examples with different functionalities: a beam shifter, a cylindrical cloak and a ground-plane cloak.Comment: 15 pages, 3 figure

    Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials

    Full text link
    The explicit dispersion equation for a one-dimensional periodic structure with alternative layers of left-handed material (LHM) and right-handed material (RHM) is given and analyzed. Some abnormal phenomena such as spurious modes with complex frequencies, discrete modes and photon tunnelling modes are observed in the band structure. The existence of spurious modes with complex frequencies is a common problem in the calculation of the band structure for such a photonic crystal. Physical explanation and significance are given for the discrete modes (with real values of wave number) and photon tunnelling propagation modes (with imaginary wave numbers in a limited region).Comment: 10 pages, 4 figure

    Superluminal X-shaped beams propagating without distortion along a coaxial guide

    Get PDF
    In a previous paper [Phys. Rev. E64 (2001) 066603; e-print physics/0001039], we showed that localized Superluminal solutions to the Maxwell equations exist, which propagate down (non-evanescence) regions of a metallic cylindrical waveguide. In this paper we construct analogous non-dispersive waves propagating along coaxial cables. Such new solutions, in general, consist in trains of (undistorted) Superluminal "X-shaped" pulses. Particular attention is paid to the construction of finite total energy solutions. Any results of this kind may find application in the other fields in which an essential role is played by a wave-equation (like acoustics, geophysics, etc.). [PACS nos.: 03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs; 46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized beams; Superluminal waves; Coaxial cables; Bidirectional decomposition; Bessel beams; X-shaped waves; Maxwell equations; Microwaves; Optics; Special relativity; Coaxial metallic waveguides; Acoustics; Seismology; Mechanical waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (22 pages), plus 15 figures; in press in Phys. Rev.

    Gyrotropic impact upon negatively refracting surfaces

    Get PDF
    Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of non-reciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos–Hänchen shift is given

    X-wave mediated instability of plane waves in Kerr media

    Get PDF
    Plane waves in Kerr media spontaneously generate paraxial X-waves (i.e. non-dispersive and non-diffractive pulsed beams) that get amplified along propagation. This effect can be considered a form of conical emission (i.e. spatio-temporal modulational instability), and can be used as a key for the interpretation of the out of axis energy emission in the splitting process of focused pulses in normally dispersive materials. A new class of spatio-temporal localized wave patterns is identified. X-waves instability, and nonlinear X-waves, are also expected in periodical Bose condensed gases.Comment: 4 pages, 6 figure
    corecore