4,275 research outputs found
Numerical Study of Wave Propagation in Uniaxially Anisotropic Lorentzian Backward Wave Slabs
The propagation and refraction of a cylindrical wave created by a line
current through a slab of backward wave medium, also called left-handed medium,
is numerically studied with FDTD. The slab is assumed to be uniaxially
anisotropic. Several sets of constitutive parameters are considered and
comparisons with theoretical results are made. Electric field distributions are
studied inside and behind the slab. It is found that the shape of the
wavefronts and the regions of real and complex wave vectors are in agreement
with theoretical results.Comment: 6 pages, figure
Where Are Be/black-hole Binaries?
We apply the tidal truncation model proposed by Negueruela & Okazaki(2001) to
arbitrary Be/compact star binaries to study the truncation efficiency
dependance on the binary parameters. We find that the viscous decretion disks
around the Be stars could be truncated very effectively in narrow systems.
Combining this with the population synthesis results of Podsiadlowski,
Rappaport and Han (2003) that binary black holes are most likely to be born in
systems with orbital periods less than about 30 days, we suggest that most of
the Be/black-hole binaries may be transient systems with very long quiescent
states. This could explain the lack of observed Be/black-hole X-ray binaries.
We also discuss the evolution of the Be/black-hole binaries and their possible
observational features.Comment: 14 pages,3 figures, ApJ accepte
Self-induced charge currents in electromagnetic materials, photon effective rest mass and some related topics
The contribution of self-induced charge currents of metamaterial media to
photon effective rest mass is discussed in detail in the present paper. We
concern ourselves with two kinds of photon effective rest mass, i.e., the
frequency-dependent and frequency-independent effective rest mass. Based on
these two definitions, we calculate the photon effective rest mass in the
left-handed medium and the 2TDLM media, the latter of which is described by the
so-called two time derivative Lorentz material (2TDLM) model. Additionally, we
concentrate primarily on the torque, which is caused by the interaction between
self-induced charge currents in dilute plasma (e.g., the secondary cosmic rays)
and interstellar magnetic fields (ambient cosmic magnetic vector potentials),
acting on the torsion balance of the rotating torsion balance experiment.Comment: 11 pages, Late
Habitat‐dependent occupancy and movement in a migrant songbird highlights the importance of mangroves and forested lagoons in Panama and Colombia
Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea‐level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species. Little is known about the ecology of nonterritorial species that may display more complex movement patterns within and among habitats of differing quality. In this study, we assess within‐season survival and movement at two spatio‐temporal scales of a nonterritorial overwintering bird, the prothonotary warbler (Protonotaria citrea), that depends on mangroves and tropical lowland forests. Specifically, we (a) estimated within‐patch survival and persistence over a six‐week period using radio‐tagged birds in central Panama and (b) modeled abundance and occupancy dynamics at survey points throughout eastern Panama and northern Colombia as the dry season progressed. We found that site persistence was highest in mangroves; however, the probability of survival did not differ among habitats. The probability of warbler occupancy increased with canopy cover, and wet habitats were least likely to experience local extinction as the dry season progressed. We also found that warbler abundance is highest in forests with the tallest canopies. This study is one of the first to demonstrate habitat‐dependent occupancy and movement in a nonterritorial overwintering migrant songbird, and our findings highlight the need to conserve intact, mature mangrove, and lowland forests
On the Localization of One-Photon States
Single photon states with arbitrarily fast asymptotic power-law fall-off of
energy density and photodetection rate are explicitly constructed. This goes
beyond the recently discovered tenth power-law of the Hellwarth-Nouchi photon
which itself superseded the long-standing seventh power-law of the Amrein
photon.Comment: 7 pages, tex, no figure
Transformation Optics for Plasmonics
A new strategy to control the flow of surface plasmon polaritons at metallic
surfaces is presented. It is based on the application of the concept of
Transformation Optics to devise the optical parameters of the dielectric medium
placed on top of the metal surface. We describe the general methodology for the
design of Transformation-Optical devices for surface plasmons and analyze, for
proof-of-principle purposes, three representative examples with different
functionalities: a beam shifter, a cylindrical cloak and a ground-plane cloak.Comment: 15 pages, 3 figure
Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials
The explicit dispersion equation for a one-dimensional periodic structure
with alternative layers of left-handed material (LHM) and right-handed material
(RHM) is given and analyzed. Some abnormal phenomena such as spurious modes
with complex frequencies, discrete modes and photon tunnelling modes are
observed in the band structure. The existence of spurious modes with complex
frequencies is a common problem in the calculation of the band structure for
such a photonic crystal. Physical explanation and significance are given for
the discrete modes (with real values of wave number) and photon tunnelling
propagation modes (with imaginary wave numbers in a limited region).Comment: 10 pages, 4 figure
Superluminal X-shaped beams propagating without distortion along a coaxial guide
In a previous paper [Phys. Rev. E64 (2001) 066603; e-print physics/0001039],
we showed that localized Superluminal solutions to the Maxwell equations exist,
which propagate down (non-evanescence) regions of a metallic cylindrical
waveguide. In this paper we construct analogous non-dispersive waves
propagating along coaxial cables. Such new solutions, in general, consist in
trains of (undistorted) Superluminal "X-shaped" pulses. Particular attention is
paid to the construction of finite total energy solutions. Any results of this
kind may find application in the other fields in which an essential role is
played by a wave-equation (like acoustics, geophysics, etc.). [PACS nos.:
03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs;
46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized
beams; Superluminal waves; Coaxial cables; Bidirectional decomposition; Bessel
beams; X-shaped waves; Maxwell equations; Microwaves; Optics; Special
relativity; Coaxial metallic waveguides; Acoustics; Seismology; Mechanical
waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (22 pages), plus 15 figures; in press in Phys. Rev.
Gyrotropic impact upon negatively refracting surfaces
Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of non-reciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos–Hänchen shift is given
X-wave mediated instability of plane waves in Kerr media
Plane waves in Kerr media spontaneously generate paraxial X-waves (i.e.
non-dispersive and non-diffractive pulsed beams) that get amplified along
propagation. This effect can be considered a form of conical emission (i.e.
spatio-temporal modulational instability), and can be used as a key for the
interpretation of the out of axis energy emission in the splitting process of
focused pulses in normally dispersive materials. A new class of spatio-temporal
localized wave patterns is identified. X-waves instability, and nonlinear
X-waves, are also expected in periodical Bose condensed gases.Comment: 4 pages, 6 figure
- …