1,951 research outputs found
Quantum critical scaling behavior of deconfined spinons
We perform a renormalization group analysis of some important effective field
theoretic models for deconfined spinons. We show that deconfined spinons are
critical for an isotropic SU(N) Heisenberg antiferromagnet, if is large
enough. We argue that nonperturbatively this result should persist down to N=2
and provide further evidence for the so called deconfined quantum criticality
scenario. Deconfined spinons are also shown to be critical for the case
describing a transition between quantum spin nematic and dimerized phases. On
the other hand, the deconfined quantum criticality scenario is shown to fail
for a class of easy-plane models. For the cases where deconfined quantum
criticality occurs, we calculate the critical exponent for the decay of
the two-spin correlation function to first-order in . We also
note the scaling relation connecting the exponent
for the decay to the correlation length exponent and the crossover
exponent .Comment: 4.1 pages, no figures, references added; Version accepted for
publication in PRB (RC
The arctic curve of the domain-wall six-vertex model in its anti-ferroelectric regime
An explicit expression for the spatial curve separating the region of
ferroelectric order (`frozen' zone) from the disordered one (`temperate' zone)
in the six-vertex model with domain wall boundary conditions in its
anti-ferroelectric regime is obtained.Comment: 12 pages, 1 figur
Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)
We study the phase diagram of quark matter at finite temperature (T) and
finite chemical potential (mu) in the strong coupling limit of lattice QCD for
color SU(3). We derive an analytical expression of the effective free energy as
a function of T and mu, including baryon effects. The finite temperature
effects are evaluated by integrating over the temporal link variable exactly in
the Polyakov gauge with anti-periodic boundary condition for fermions. The
obtained phase diagram shows the first order phase transition at low
temperatures and the second order phase transition at high temperatures
separated by the tri-critical point in the chiral limit. Baryon has effects to
reduce the effective free energy and to extend the hadron phase to a larger mu
direction at low temperatures.Comment: 18 pages, 10 figure
Renormalization Group Analysis of a Gursey Model Inspired Field Theory II
Recently a model, which is equivalent to the scalar form of Gursey model, is
shown to be a nontrivial field theoretical model when it is gauged with a SU(N)
field. In this paper we study another model that is equivalent to the vector
form of the Gursey model. We get a trivial theory when it is coupled with a
scalar field. This result changes drastically when it is coupled with an
additional SU(N) field. We find a nontrivial field theoretical model under
certain conditions.Comment: 10 pages, 10 figures, revtex4, typos corrected, published versio
Corrections to scaling in multicomponent polymer solutions
We calculate the correction-to-scaling exponent that characterizes
the approach to the scaling limit in multicomponent polymer solutions. A direct
Monte Carlo determination of in a system of interacting
self-avoiding walks gives . A field-theory analysis based
on five- and six-loop perturbative series leads to . We
also verify the renormalization-group predictions for the scaling behavior
close to the ideal-mixing point.Comment: 21 page
Background gauge invariance in the antifield formalism for theories with open gauge algebras
We show that any BRST invariant quantum action with open or closed gauge
algebra has a corresponding local background gauge invariance. If the BRST
symmetry is anomalous, but the anomaly can be removed in the antifield
formalism, then the effective action possesses a local background gauge
invariance. The presence of antifields (BRST sources) is necessary. As an
example we analyze chiral gravity.Comment: 17pp., Latex, mispelling in my name! corrected, no other change
Global Anomalies in the Batalin Vilkovisky Quantization
The Batalin Vilkovisky (BV) quantization provides a general procedure for
calculating anomalies associated to gauge symmetries. Recent results show that
even higher loop order contributions can be calculated by introducing an
appropriate regularization-renormalization scheme. However, in its standard
form, the BV quantization is not sensible to quantum violations of the
classical conservation of Noether currents, the so called global anomalies. We
show here that the BV field antifield method can be extended in such a way that
the Ward identities involving divergencies of global Abelian currents can be
calculated from the generating functional, a result that would not be obtained
by just associating constant ghosts to global symmetries. This extension,
consisting of trivially gauging the global Abelian symmetries, poses no extra
obstruction to the solution of the master equation, as it happens in the case
of gauge anomalies. We illustrate the procedure with the axial model and also
calculating the Adler Bell Jackiw anomaly.Comment: We emphasized the fact that our procedure only works for the case of
Abelian global anomalies. Section 3 was rewritten and some references were
added. 12 pages, LATEX. Revised version that will appear in Phys. Rev.
The Rapidly Rotating, Hydrogen Deficient, Hot Post-Asymptotic Giant Branch Star ZNG 1 in the Globular Cluster M5
We report observations of the hot post-asymptotic giant branch star ZNG 1 in
the globular cluster M5 (NGC 5904) with the Far Ultraviolet Spectroscopic
Explorer (FUSE). From the resulting spectrum, we derive an effective
temperature T_eff = 44300 +/- 300 K, a surface gravity log g = 4.3 +/- 0.1, a
rotational velocity v sin i = 170 +/- 20 km/s, and a luminosity log (L/L_sun) =
3.52 +/- 0.04. The atmosphere is helium-rich (Y = 0.93), with enhanced carbon
(2.6% by mass), nitrogen (0.51%) and oxygen (0.37%) abundances. The spectrum
shows evidence for a wind with terminal velocity near 1000 km/s and an
expanding shell of carbon- and nitrogen-rich material around the star. The
abundance pattern of ZNG 1 is suggestive of the ``born-again'' scenario,
whereby a star on the white-dwarf cooling curve undergoes a very late shell
flash and returns to the AGB, but the star's rapid rotation is more easily
explained by a previous interaction with a binary companion.Comment: 8 pages, 2 PostScript figures, Latex with emulateapj5. Accepted for
publication in ApJ Letter
Seiberg-Witten maps and noncommutative Yang-Mills theories for arbitrary gauge groups
Seiberg-Witten maps and a recently proposed construction of noncommutative
Yang-Mills theories (with matter fields) for arbitrary gauge groups are
reformulated so that their existence to all orders is manifest. The ambiguities
of the construction which originate from the freedom in the Seiberg-Witten map
are discussed with regard to the question whether they can lead to inequivalent
models, i.e., models not related by field redefinitions.Comment: 12 pages; references added, minor misprints correcte
Distributions of absolute central moments for random walk surfaces
We study periodic Brownian paths, wrapped around the surface of a cylinder.
One characteristic of such a path is its width square, , defined as its
variance. Though the average of over all possible paths is well known,
its full distribution function was investigated only recently. Generalising
to , defined as the -th power of the {\it magnitude} of the
deviations of the path from its mean, we show that the distribution functions
of these also scale and obtain the asymptotic behaviour for both large and
small
- âŠ