15,992 research outputs found

    High-resolution imaging of ultracold fermions in microscopically tailored optical potentials

    Full text link
    We report on the local probing and preparation of an ultracold Fermi gas on the length scale of one micrometer, i.e. of the order of the Fermi wavelength. The essential tool of our experimental setup is a pair of identical, high-resolution microscope objectives. One of the microscope objectives allows local imaging of the trapped Fermi gas of 6Li atoms with a maximum resolution of 660 nm, while the other enables the generation of arbitrary optical dipole potentials on the same length scale. Employing a 2D acousto-optical deflector, we demonstrate the formation of several trapping geometries including a tightly focussed single optical dipole trap, a 4x4-site two-dimensional optical lattice and a 8-site ring lattice configuration. Furthermore, we show the ability to load and detect a small number of atoms in these trapping potentials. A site separation of down to one micrometer in combination with the low mass of 6Li results in tunneling rates which are sufficiently large for the implementation of Hubbard-models with the designed geometries.Comment: 15 pages, 6 figure

    Anisotropic effect of field on the orthorhombic-to-tetragonal transition in the striped cuprate (La,Nd)_{2-x}Sr_xCuO_4

    Full text link
    The Nd-doped cuprate La_{2-y-x}Nd_ySr_xCuO_4 displays a first-order phase transition at T_d (= 74 K for x=0.10, y = 0.60) to a low-temperature tetragonal (LTT) phase. A magnetic field H applied || the a-axis leads to an increase in T_d, whereas T_d is decreased when H || c. These effects show that magnetic ordering involving both Nd and Cu spins plays a key role in driving the LTO-LTT transition. Related anisotropic effects are observed in the uniform susceptibility and the in-plane magnetoresistance.Comment: 5 pages, 5 figure

    Calibration of a single atom detector for atomic micro chips

    Get PDF
    We experimentally investigate a scheme for detecting single atoms magnetically trapped on an atom chip. The detector is based on the photoionization of atoms and the subsequent detection of the generated ions. We describe the characterization of the ion detector with emphasis on its calibration via the correlation of ions with simultaneously generated electrons. A detection efficiency of 47.8% (+-2.6%) is measured, which is useful for single atom detection, and close to the limit allowing atom counting with sub-Poissonian uncertainty

    Carrier-wave Rabi flopping signatures in high-order harmonic generation for alkali atoms

    Get PDF
    We present the first theoretical investigation of carrier-wave Rabi flopping in real atoms by employing numerical simulations of high-order harmonic generation (HHG) in alkali species. Given the short HHG cutoff, related to the low saturation intensity, we concentrate on the features of the third harmonic of sodium (Na) and potassium (K) atoms. For pulse areas of 2π\pi and Na atoms, a characteristic unique peak appears, which, after analyzing the ground state population, we correlate with the conventional Rabi flopping. On the other hand, for larger pulse areas, carrier-wave Rabi flopping occurs, and is associated with a more complex structure in the third harmonic. These new characteristics observed in K atoms indicate the breakdown of the area theorem, as was already demonstrated under similar circumstances in narrow band gap semiconductors

    Low-cost Sensor System for Non-invasive Monitoring of Cell Growth in Disposable Bioreactors

    Get PDF
    AbstractTo ensure productivity and product quality, the parameters of biotechnological processes need to be monitored. Along temperature or pH, one important parameter is the cell density in the culture medium. In this work, we present a low-cost sensor system for online cell growth monitoring in bioreactors via permittivity measurements based on coplanar transmission lines. To evaluate the sensor, E. coli cultivations are performed. We found a good correlation between optical density of the culture medium and the effective permittivity at a frequency of 1kHz when the sensor is submerged into the culture medium. Measurements at higher frequencies additionally allow monitoring the osmolarity. Furthermore, an improved sensor was successfully used for first non-invasive measurements through the polymer wall of a disposable bioreactor

    Cooperative Scattering by Cold Atoms

    Full text link
    We have studied the interplay between disorder and cooperative scattering for single scattering limit in the presence of a driving laser. Analytical results have been derived and we have observed cooperative scattering effects in a variety of experiments, ranging from thermal atoms in an optical dipole trap, atoms released from a dark MOT and atoms in a BEC, consistent with our theoretical predictions.Comment: submitted for special issue of PQE 201

    Cold atoms near superconductors: Atomic spin coherence beyond the Johnson noise limit

    Full text link
    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom / solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.Comment: Major revisions of the text for submission to New Journal of Physics 8 pages, 4 figure

    Ad- and desorption of Rb atoms on a gold nanofilm measured by surface plasmon polaritons

    Full text link
    Hybrid quantum systems made of cold atoms near nanostructured surfaces are expected to open up new opportunities for the construction of quantum sensors and for quantum information. For the design of such tailored quantum systems the interaction of alkali atoms with dielectric and metallic surfaces is crucial and required to be understood in detail. Here, we present real-time measurements of the adsorption and desorption of Rubidium atoms on gold nanofilms. Surface plasmon polaritons (SPP) are excited at the gold surface and detected in a phase sensitive way. From the temporal change of the SPP phase the Rubidium coverage of the gold film is deduced with a sensitivity of better than 0.3 % of a monolayer. By comparing the experimental data with a Langmuir type adsorption model we obtain the thermal desorption rate and the sticking probability. In addition, also laser-induced desorption is observed and quantified.Comment: 9 pages, 6 figure

    Substrate-induced strain effects on Pr_{0.6}Ca_{0.4}MnO_{3} films

    Full text link
    We report the characterization of the crystal structure, low-temperature charge and orbital ordering, transport, and magnetization of Pr_{0.6}Ca_{0.4}MnO_{3} films grown on LaAlO_{3}, NdGaO_{3}, and SrTiO_{3} substrates, which provide compressive (LaAlO_{3}) and tensile (NdGaO_{3} and SrTiO_{3}) strain. The films are observed to exhibit different crystallographic symmetries than the bulk material, and the low-temperature ordering is found to be more robust under compressive-- as opposed to tensile-- strain. In fact, bulk-like charge and orbital ordering is not observed in the film grown on NdGaO_{3}, which is the substrate that provides the least amount of nominal and measured, but tensile, strain. This result suggests the importance of the role played by the Mn--O--Mn bond angles in the formation of charge and orbital ordering at low temperatures. Finally, in the film grown on LaAlO_{3}, a connection between the lattice distortion associated with orbital ordering and the onset of antiferromagnetism is reported.Comment: 12 pages, 7 figure
    corecore