1,722 research outputs found

    Petahertz optoelectronics via attosecond control of solids

    Get PDF

    Optical Gain in Solids after Ultrafast Strong-Field Excitation

    Get PDF

    Evolution of transcriptional networks in yeast: Alternative teams of transcriptional factors for different species

    Get PDF
    Background: The diversity in eukaryotic life reflects a diversity in regulatory pathways. Nocedal and Johnson argue that the rewiring of gene regulatory networks is a major force for the diversity of life, that changes in regulation can create new species. Results: We have created a method (based on our new "ping-pong algorithm) for detecting more complicated rewirings, where several transcription factors can substitute for one or more transcription factors in the regulation of a family of co-regulated genes. An example is illustrative. A rewiring has been reported by Hogues et al. that RAP1 in Saccharomyces cerevisiae substitutes for TBF1/CBF1 in Candida albicans for ribosomal RP genes. There one transcription factor substitutes for another on some collection of genes. Such a substitution is referred to as a "rewiring". We agree with this finding of rewiring as far as it goes but the situation is more complicated. Many transcription factors can regulate a gene and our algorithm finds that in this example a "team" (or collection) of three transcription factors including RAP1 substitutes for TBF1 for 19 genes. The switch occurs for a branch of the phylogenetic tree containing 10 species (including Saccharomyces cerevisiae), while the remaining 13 species (Candida albicans) are regulated by TBF1. Conclusions: To gain insight into more general evolutionary mechanisms, we have created a mathematical algorithm that finds such general switching events and we prove that it converges. Of course any such computational discovery should be validated in the biological tests. For each branch of the phylogenetic tree and each gene module, our algorithm finds a sub-group of co-regulated genes and a team of transcription factors that substitutes for another team of transcription factors. In most cases the signal will be small but in some cases we find a strong signal of switching. We report our findings for 23 Ascomycota fungi species. Β© 2016 The Author(s)

    Single-shot carrier-envelope-phase measurement in ambient air

    No full text
    The ability to measure and control the carrier envelope phase (CEP) of few-cycle laser pulses is of paramount importance for both frequency metrology and attosecond science. Here, we present a phase meter relying on the CEP-dependent photocurrents induced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new device facilitates compact single-shot, CEP measurements under ambient conditions and promises CEP tagging at repetition rates orders of magnitude higher than most conventional CEP detection schemes as well as straightforward implementation at longer wavelengths

    Multiscale theory of turbulence in wavelet representation

    Full text link
    We present a multiscale description of hydrodynamic turbulence in incompressible fluid based on a continuous wavelet transform (CWT) and a stochastic hydrodynamics formalism. Defining the stirring random force by the correlation function of its wavelet components, we achieve the cancellation of loop divergences in the stochastic perturbation expansion. An extra contribution to the energy transfer from large to smaller scales is considered. It is shown that the Kolmogorov hypotheses are naturally reformulated in multiscale formalism. The multiscale perturbation theory and statistical closures based on the wavelet decomposition are constructed.Comment: LaTeX, 27 pages, 3 eps figure

    Electro-optic characterization of synthesized infrared-visible light fields

    Get PDF
    The measurement and control of light field oscillations enable the study of ultrafast phenomena on sub-cycle time scales. Electro-optic sampling (EOS) is a powerful field characterization approach, in terms of both sensitivity and dynamic range, but it has not reached beyond infrared frequencies. Here, we show the synthesis of a sub-cycle infrared-visible pulse and subsequent complete electric field characterization using EOS. The sampled bandwidth spans from 700 nm to 2700 nm (428 to 110 THz). Tailored electric-field waveforms are generated with a two-channel field synthesizer in the infrared-visible range, with a full-width at half-maximum duration as short as 3.8 fs at a central wavelength of 1.7 ¡m (176 THz). EOS detection of the complete bandwidth of these waveforms extends it into the visible spectral range. To demonstrate the power of our approach, we use the sub-cycle transients to inject carriers in a thin quartz sample for nonlinear photoconductive field sampling with sub-femtosecond resolution

    Π‘ΠΏΡ–Ρ€ΠΎ[Π±Π΅Π½Π·ΠΎ[Π΅]ΠΏΡ–Ρ€Π°Π½ΠΎ[3,2-с][1,2]оксатіїн-4,3’-Ρ–Π½Π΄ΠΎΠ»]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ» 5,5-діоксиди: синтСз Ρ– вивчСння Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності

    Get PDF
    The development of medicines with several pharmacological activities, including the analgesic, anti-inflammatory and antimicrobial properties, is one of the challenging tasks of modern medicinal chemistry.Aim. To expand the range of novel spiro-condensed derivatives of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide, and study the biological activity of the substances obtained.Results and discussions. The target compounds were synthesized as a result of the interaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide, malononitrile and isatins. When using ethyl cyanoacetate the interaction appeared to be much more complicated and requires further research. The study of the biological activity has revealed the compounds with the analgesic properties and the antimicrobial effect against gram-positive strains.Experimental part. Two new 2-amino-2’-oxospiro[4H-pyrano[3,2-c][1,2]benzoxathiine-4,3’-indoline]-3-carbonitrile 5,5-dioxides were synthesized by the three-component reaction based on 1,2-benzoxathiin-4(3H)-one 2,2-dioxide. The anti-inflammatory activity was studied on the model of the carrageenan induced paw edema, and the analgesic activity was assessed on the model of the local inflammatory hyperalgesia. The study of the antimicrobial activity of the compounds obtained was performed by the agar well diffusion method.Conclusions. New spiro[benzo[Π΅]pyrano[3,2-c][1,2]oxathiin-4,3’-indolil]-3-carbonitrile 5,5-dioxides have been synthesized. The compounds obtained have revealed high levels of the analgesic properties and the antimicrobial activity. The latter exceeds the activity of the reference drugs, and has appeared to be higher against grampositive bacteria.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° лСкарствСнных срСдств с нСсколькими Π²ΠΈΠ΄Π°ΠΌΠΈ фармакологичСской активности, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Π΅ свойства, являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ соврСмСнной мСдицинской Ρ…ΠΈΠΌΠΈΠΈ.ЦСль. Π Π°ΡΡˆΠΈΡ€ΠΈΡ‚ΡŒ ряд Π½ΠΎΠ²Ρ‹Ρ… спирокондСнсированных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 1,2-бСнзоксатиин-4(3Н)-ΠΎΠ½ 2,2-диоксида ΠΈ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… вСщСств.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. Π¦Π΅Π»Π΅Π²Ρ‹Π΅ соСдинСния Π±Ρ‹Π»ΠΈ синтСзированы Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ взаимодСйствия 1,2-бСнзоксатиин-4(3Н)-ΠΎΠ½ 2,2-диоксида, ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΈ ΠΈΠ·Π°Ρ‚ΠΈΠ½ΠΎΠ². Π’ случаС использования этилцианоацСтата Π² качСствС ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π½ΠΈΡ‚Ρ€ΠΈΠ»Π° взаимодСйствиС оказалось Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ слоТным ΠΈ нуТдаСтся Π² дальнСйшСм ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ. ИсслСдованиС биологичСской активности выявило соСдинСния с Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠΌΠΈ свойствами ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹ΠΌ дСйствиСм Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ².Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ. Π”Π²Π° Π½ΠΎΠ²Ρ‹Ρ… 2-Π°ΠΌΠΈΠ½ΠΎ-2’-оксоспиро[4Н-ΠΏΠΈΡ€Π°Π½ΠΎ[3,2-с][1,2]бСнзоксатиин-4,3’-ΠΈΠ½Π΄ΠΎΠ»ΠΈΠ½]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ» 5,5-диоксида Π±Ρ‹Π»ΠΈ синтСзированы с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠΉ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ Π½Π° основС 1,2-бСнзоксатиин-4(3Н)-ΠΎΠ½ 2,2-диоксида. ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠ°Ρ€Π°Π³Π΅Π½ΠΈΠ½-ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Π΅ΠΊΠ°, Π° Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ локальной Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅Ρ€Π°Π»Π³Π΅Π·ΠΈΠΈ. Π‘Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… соСдинСний ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ€.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ спиро[Π±Π΅Π½Π·ΠΎ[Π΅]ΠΏΠΈΡ€Π°Π½ΠΎ[3,2-с][1,2]оксатиин-4,3’-ΠΈΠ½Π΄ΠΎΠ»ΠΈΠ»]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ» 5,5-диоксиды. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ соСдинСния проявили Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ свойства ΠΈ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, которая ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² сравнСния ΠΈ оказалась Π²Ρ‹ΡˆΠ΅ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ.Π ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠ° Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΡ… засобів, Ρ‰ΠΎ Π²ΠΎΠ»ΠΎΠ΄Ρ–ΡŽΡ‚ΡŒ Π΄Π΅ΠΊΡ–Π»ΡŒΠΊΠΎΠΌΠ° Π²ΠΈΠ΄Π°ΠΌΠΈ Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності, Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‡ΠΈ Π·Π½Π΅Π±ΠΎΠ»ΡŽΠ²Π°Π»ΡŒΠ½Ρƒ, ΠΏΡ€ΠΎΡ‚ΠΈΠ·Π°ΠΏΠ°Π»ΡŒΠ½Ρƒ Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ, Ρ” ΠΎΠ΄Π½ΠΈΠΌ Π· Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΡ… завдань сучасної ΠΌΠ΅Π΄ΠΈΡ‡Π½ΠΎΡ— Ρ…Ρ–ΠΌΡ–Ρ—.ΠœΠ΅Ρ‚Π°. Π ΠΎΠ·ΡˆΠΈΡ€ΠΈΡ‚ΠΈ ряд Π½ΠΎΠ²ΠΈΡ… спірокондСнсованих ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 1,2-бСнзоксатіїн-4(3Н)-ΠΎΠ½ 2,2-діоксиду Ρ– дослідити Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. Π¦Ρ–Π»ΡŒΠΎΠ²Ρ– сполуки Π±ΡƒΠ»ΠΈ синтСзовані Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— 1,2-бСнзоксатіїн-4(3Н)-ΠΎΠ½ 2,2-діоксиду, ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½Ρ–Ρ‚Ρ€ΠΈΠ»Ρƒ Ρ‚Π° Ρ–Π·Π°Ρ‚ΠΈΠ½Ρ–Π². Π£ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ використання Π΅Ρ‚ΠΈΠ»Ρ†Ρ–Π°Π½ΠΎΠ°Ρ†Π΅Ρ‚Π°Ρ‚Ρƒ як ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π½Ρ–Ρ‚Ρ€ΠΈΠ»Ρƒ взаємодія виявилася Π½Π°Π±Π°Π³Π°Ρ‚ΠΎ ΡΠΊΠ»Π°Π΄Π½Ρ–ΡˆΠΎΡŽ Ρ– ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡ” ΠΏΠΎΠ΄Π°Π»ΡŒΡˆΠΈΡ… Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ. ВивчСння Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності виявило сполуки Π· Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ властивостями Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡŽ Π΄Ρ–Ρ”ΡŽ ΠΏΡ€ΠΎΡ‚ΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ… ΡˆΡ‚Π°ΠΌΡ–Π².Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° частина. Π”Π²Π° Π½ΠΎΠ²ΠΈΡ… 2-Π°ΠΌΡ–Π½ΠΎ-2’-оксоспіро[4H-ΠΏΡ–Ρ€Π°Π½ΠΎ[3,2-с][1,2]бСнзоксатіїн-4,3’-Ρ–Π½Π΄ΠΎΠ»Ρ–Π½]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ» 5,5-діоксиди Π±ΡƒΠ»ΠΈ синтСзовані Π·Π° допомогою Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΡ— Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ— Π½Π° основі 1,2-бСнзоксатіїн-4(3Н)-ΠΎΠ½ 2,2-діоксиду. ΠŸΡ€ΠΎΡ‚ΠΈΠ·Π°ΠΏΠ°Π»ΡŒΠ½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ– ΠΊΠ°Ρ€Π°Π³Π΅Π½Ρ–Π½ΠΎΠ²ΠΎΠ³ΠΎ набряку, Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΎΡ†Ρ–Π½ΡŽΠ²Π°Π»ΠΈ Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ– місцСвої Π·Π°ΠΏΠ°Π»ΡŒΠ½ΠΎΡ— Π³Ρ–ΠΏΠ΅Ρ€Π°Π»Π³Π΅Π·Ρ–Ρ—. Π‘ΡƒΠ»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ– дослідТСння Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… сполук ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„ΡƒΠ·Ρ–Ρ— Π² Π°Π³Π°Ρ€.Висновки. Π‘ΠΈΠ½Ρ‚Π΅Π·ΠΎΠ²Π°Π½ΠΎ Π½ΠΎΠ²Ρ– спіро[Π±Π΅Π½Π·ΠΎ[Π΅]ΠΏΡ–Ρ€Π°Π½ΠΎ[3,2-с][1,2]оксатіїн-4,3’-Ρ–Π½Π΄ΠΎΠ»]-3-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ» 5,5-діоксиди. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– сполуки виявили високий Ρ€Ρ–Π²Π΅Π½ΡŒ Π°Π½Π°Π»ΡŒΠ³Π΅Ρ‚ΠΈΡ‡Π½ΠΎΡ— Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності. ΠžΡΡ‚Π°Π½Π½Ρ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΡƒΡ” Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ рСфСрСнс-ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² Ρ– виявилася Π±Ρ–Π»ΡŒΡˆ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡŽ ΠΏΡ€ΠΎΡ‚ΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ… Π±Π°ΠΊΡ‚Π΅Ρ€Ρ–ΠΉ
    • …
    corecore