83 research outputs found

    Atlantic Ocean Heat Transport Enabled by Indo-Pacific Heat Uptake and Mixing

    Get PDF
    The ocean transports vast amounts of heat around the planet, helping to regulate regional climate. One important component of this heat transport is the movement of warm water from equatorial regions toward the poles, with colder water flowing in return. Here, we introduce a framework relating meridional heat transport to the diabatic processes of surface forcing and turbulent mixing that move heat across temperature classes. Applied to a (1/4)° global ocean model the framework highlights the role of the tropical Indo‐Pacific in the global ocean heat transport. A large fraction of the northward heat transport in the Atlantic is ultimately sourced from heat uptake in the eastern tropical Pacific. Turbulent mixing moves heat from the warm, shallow Indo‐Pacific circulation to the cold deeper‐reaching Atlantic circulation. Our results underscore a renewed focus on the tropical oceans and their role in global circulation pathways

    Changing water cycle and freshwater transports in the Atlantic Ocean in observations and CMIP5 models

    Get PDF
    Observations over the last 40 years show that the Atlantic Ocean salinity pattern has amplified, likely in response to changes in the atmospheric branch of the global water cycle. Observational estimates of oceanic meridional freshwater transport (FWT) at 26.5° N indicate a large increase over the last few decades, during an apparent decrease in the Atlantic Meridional Overturning Circulation (AMOC). However, there is limited observation based information at other latitudes. The relative importance of changing FWT divergence in these trends remains uncertain. Ten models from the Coupled Model Intercomparison Project Phase 5 are analysed for AMOC, FWT, water cycle, and salinity changes over 1950–2100. Over this timescale, strong trends in the water cycle and oceanic freshwater transports emerge, a part of anthropogenic climate change. Results show that as the water cycle amplifies with warming, FWT strengthens (more southward freshwater transport) throughout the Atlantic sector over the 21st century. FWT strengthens in the North Atlantic subtropical region in spite of declining AMOC, as the long-term trend is dominated by salinity change. The AMOC decline also induces a southward shift of the Inter-Tropical Convergence Zone and a dipole pattern of precipitation change over the tropical region. The consequent decrease in freshwater input north of the equator together with increasing net evaporation lead to strong salinification of the North Atlantic sub-tropical region, enhancing net northward salt transport. This opposes the influence of further AMOC weakening and results in intensifying southward freshwater transports across the entire Atlantic

    Global water cycle amplifying at less than the Clausius-Clapeyron rate

    Get PDF
    A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7% °C−1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for inferring changes in the water cycle from changes in three-dimensional salinity. Using full depth salinity observations we infer a water cycle amplification of 3.0 ± 1.6% °C−1 over 1950–2010. Climate models agree with observations in terms of a water cycle amplification (4.3 ± 2.0% °C−1) substantially less than CC adding confidence to projections of total water cycle change under greenhouse gas emission scenarios

    The imprint of Southern Ocean overturning on seasonal water mass variability in Drake Passage

    Get PDF
    Seasonal changes in water mass properties are discussed in thermohaline coordinates from a seasonal climatology and repeat hydrographic sections. The SR1b CTD transects along Drake Passage are used as a case study. The amount of water within temperature and salinity classes and changes therein are used to estimate dia-thermal and dia-haline transformations. These transformations are considered in combination with climatologies of surface buoyancy flux to determine the relative contributions of surface buoyancy fluxes and subsurface mixing to changes in the distribution of water in thermohaline coordinates. The framework developed provides unique insights into the thermohaline circulation of the water masses that are present within Drake Passage, including the erosion of Antarctic Winter Water (AAWW) during the summer months and the interaction between the Circumpolar Deep Waters (CDW) and Antarctic Intermediate Water (AAIW). The results presented are consistent with summertime wind-driven inflation of the CDW layer and deflation of the AAIW layer, and with new AAIW produced in the winter as a mixture of CDW, remnant AAWW, and surface waters. This analysis therefore highlights the role of surface buoyancy fluxes in the Southern Ocean overturning

    Atlantic Ocean Heat Transport Enabled by Indo-Pacific Heat Uptake and Mixing

    Get PDF
    The ocean transports vast amounts of heat around the planet, helping to regulate regional climate. One important component of this heat transport is the movement of warm water from equatorial regions toward the poles, with colder water flowing in return. Here, we introduce a framework relating meridional heat transport to the diabatic processes of surface forcing and turbulent mixing that move heat across temperature classes. Applied to a (1/4)° global ocean model the framework highlights the role of the tropical Indo‐Pacific in the global ocean heat transport. A large fraction of the northward heat transport in the Atlantic is ultimately sourced from heat uptake in the eastern tropical Pacific. Turbulent mixing moves heat from the warm, shallow Indo‐Pacific circulation to the cold deeper‐reaching Atlantic circulation. Our results underscore a renewed focus on the tropical oceans and their role in global circulation pathways

    Maintenance and broadening of the ocean’s salinity distribution by the water cycle

    Get PDF
    The global water cycle leaves an imprint on ocean salinity through evaporation and precipitation. It has been proposed that observed changes in salinity can be used to infer changes in the water cycle. Here salinity is characterized by the distribution of water masses in salinity coordinates. Only mixing and sources and sinks of freshwater and salt can modify this distribution. Mixing acts to collapse the distribution, making saline waters fresher and fresh waters more saline. Hence, in steady state, there must be net precipitation over fresh waters and net evaporation over saline waters. A simple model is developed to describe the relationship between the breadth of the distribution, the water cycle, and mixing—the latter being characterized by an e-folding time scale. In both observations and a state-of-the-art ocean model, the water cycle maintains a salinity distribution in steady state with a mixing time scale of the order of 50 yr. The same simple model predicts the response of the salinity distribution to a change in the water cycle. This study suggests that observations of changes in ocean salinity could be used to infer changes in the hydrological cycle

    High-latitude ocean ventilation and its role in Earth's climate transitions

    Get PDF
    The processes regulating ocean ventilation at high latitudes are re-examined based on a range of observations spanning all scales of ocean circulation, from the centimetre scales of turbulence to the basin scales of gyres. It is argued that high-latitude ocean ventilation is controlled by mechanisms that differ in fundamental ways from those that set the overturning circulation. This is contrary to the assumption of broad equivalence between the two that is commonly adopted in interpreting the role of the high-latitude oceans in Earth's climate transitions. Illustrations of how recognizing this distinction may change our view of the ocean's role in the climate system are offered

    The thermodynamic balance of the Weddell Gyre

    Get PDF
    The thermodynamic balance of the Weddell Gyre is assessed from an inverse estimate of the circulation across the gyre's rim. The gyre experiences a weak net buoyancy gain that arises from a leading-order cancellation between two opposing contributions, linked to two cells of water mass transformation and diapycnal overturning. The lower cell involves a cooling-driven densification of 8.4 ± 2.0 Sv of Circumpolar Deep Water and Antarctic Bottom Water near the gyre's southern and western margins. The upper cell entails a freshening-driven conversion of 4.9 ± 2.0 Sv of Circumpolar Deep Water into lighter upper-ocean waters within the gyre interior. The distinct role of salinity between the two cells stems from opposing salinity changes induced by sea ice production, meteoric sources and admixture of fresh upper-ocean waters in the lower cell, which contrasts with coherent reductions in salinity associated with sea ice melting and meteoric sources in the upper cell

    Recent wind-driven variability in Atlantic water mass distribution and meridional overturning circulation

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 633-647, doi:10.1175/JPO-D-16-0089.1.Interannual variability in the volumetric water mass distribution within the North Atlantic Subtropical Gyre is described in relation to variability in the Atlantic meridional overturning circulation. The relative roles of diabatic and adiabatic processes in the volume and heat budgets of the subtropical gyre are investigated by projecting data into temperature coordinates as volumes of water using an Argo-based climatology and an ocean state estimate (ECCO version 4). This highlights that variations in the subtropical gyre volume budget are predominantly set by transport divergence in the gyre. A strong correlation between the volume anomaly due to transport divergence and the variability of both thermocline depth and Ekman pumping over the gyre suggests that wind-driven heave drives transport anomalies at the gyre boundaries. This wind-driven heaving contributes significantly to variations in the heat content of the gyre, as do anomalies in the air–sea fluxes. The analysis presented suggests that wind forcing plays an important role in driving interannual variability in the Atlantic meridional overturning circulation and that this variability can be unraveled from spatially distributed hydrographic observations using the framework presented here.DGE was supported by a Natural Environment Research Council studentship award at the University of Southampton. JMT’s contribution was supported by the U.S. National Science Foundation (Grant OCE-1332667). GF’s contribution was supported by the U.S. National Science Foundation through Grant OCE-0961713 and by the U.S. National Oceanic and Atmospheric Administration through Grant NA10OAR4310135. The contributions of JDZ and AJGN were supported by the NERC Grant ‘‘Climate scale analysis of air and water masses’’ (NE/ K012932/1). ACNG gratefully acknowledges support from the Leverhulme Trust, the Royal Society, and the Wolfson Foundation. LY was supported by NASA Ocean Vector Wind Science Team (OVWST) activities under Grant NNA10AO86G
    corecore