1 research outputs found
Optical mapping as a routine tool for bacterial genome sequence finishing-0
<p><b>Copyright information:</b></p><p>Taken from "Optical mapping as a routine tool for bacterial genome sequence finishing"</p><p>http://www.biomedcentral.com/1471-2164/8/321</p><p>BMC Genomics 2007;8():321-321.</p><p>Published online 14 Sep 2007</p><p>PMCID:PMC2045679.</p><p></p>ent, red regions indicate sequence that is present on at least two contigs, and yellow regions indicate inversions. Lines between maps indicate the position of identical sequences on the two maps, and can be used to visually identify misassemblies and inversions. : An early comparison of an optical map derived from digestion of the genome to the assembled contigs generated by traditional sequencing technologies. All contigs could be ordered for gap closure. In addition, the optical map indicated an overlooked misassembly. : The finishing strategy, including gap closure and misassembly resolution, was simplified using the optical map as an assembly model. The optical map derived from an digestion of the chromosome is presented as a single contig in the center. The sequenced genome contains nine contigs that have a corresponding match to the optical map. The plasmid is 158 Kb and is too small to be identified using the current optical map technology. Nonetheless, small sections of the plasmid can be identified as regions that do not have corresponding optical map locations (white in figure). : Comparison of the final assembly of the genome (bottom) to the optical map (top) for the digest. The non-aligned contig represents the plasmid, which was generated by traditional sequencing technologies. : Comparison of the finished sequence of to the optical map revealed a large inverted region of the genome. The red regions indicate regions of repeats within the genome that cannot be resolved by optical mapping. These regions were resolved using traditional sequencing methods. The sequenced genome was easily re-oriented to correct the assembly