124 research outputs found

    Investigating firn and ice anisotropy around the EastGRIP Camp, North East Greenland Ice Stream, from ambient noise surface waves

    Get PDF
    We use cross-correlations of ambient seismic noise data between pairs of 9 broadband three component seismometers to investigate variations in velocity structure and anisotropy in the vicinity of the EastGRIP camp along and across flow of the Northeast Greenland Ice Stream (NEGIS). From the 9-component correlation tensors associated with all station pairs we derive dispersion curves of Rayleigh and Love wave group velocities between station pairs at frequencies from 1 to 25 Hz. The distributions of the Rayleigh and Love group velocities exhibit anisotropy variations for the along and across flow component. To better assess those variations, we invert the dispersions curves to shear wave velocities in the horizontal (Vsh) and vertical (Vsv) direction for the top 300 m of the NEGIS using a Markov Chain Monte Carlo approach. The reconstructed 1-D shear velocity model revels radial anisotropy in the NEGIS. Along and across flow vertical shear wave velocities (Vsv) identify comparable velocity profiles for all depths. However, horizontal shear wave velocities (Vsh) are faster by approximately 250 m/s in the along flow direction below a depth of 100 m, i.e. below the firn-ice transition. This type of anisotropy seems to arise from the alignment of a crystallographic preferred orientation, due to deformation associated with shear zones. The role of anisotropy as e.g. created by air bubbles in the firn and ice matrix, is yet unclear. Faster Vsh velocities in the along flow direction support that the NEGIS has crystal orientation alignment normal to the plane of shear compression (i.e. ice crystals orientated across flow) within the upper 300 m of the ice stream and are in alignment with the results from other methods. We demonstrate that simple, short duration (2-3 weeks), passive seismic deployment and environmental noise-based analysis can be used to determine the anisotropy of the upper part of ice masses

    Elastic Strain Effects on Wave Scattering: Implications for Coda Wave Interferometry (CWI)

    Get PDF
    Coda Wave Interferometry (CWI) is a highly sensitive monitoring technique built on the sensitivity of elastic coda waves to small changes in a diffusive medium. However, a clear connection between the physical processes involved in the evolution of the medium and the time changes observed by CWI has not been clearly described yet. Here, we quantify the impact of elastic deformation on CWI measurements at laboratory scales. We compare experimental results from wave scattering measurements during a uniaxial compression test to those of a numerical approach based on the combination of two codes (SPECFEM2D and Code_Aster), which allows us to model wave propagation in complex diffusive media during its elastic deformation. In both approaches, the reversible time delays measured between waveforms increase with the elastic deformation of the sample. From the numerical modeling, we gain insight to the relative contributions of different physical effects on the CWI measurement: local density changes from volumetric strain, the deformation of scatterers, and acoustoelastic effects. Our results suggest that acoustoelastics effects related to nonlinear elasticity are dominant

    Recent seismicity on the Kerguelen islands

    Get PDF
    The Kerguelen archipelago, one of the largest oceanic archipelagos in the world, was built by an active hotspot interacting with a ridge between 110 and 40 million years ago; since then, the ridge has migrated over 1000~km away and the archipelago's volcanic activity has been steadily decreasing. Despite the lack of recent active tectonics and the quiescent volcanism of the Kerguelen archipelago, there have been several observations of seismic events of unknown origin in its vicinity. The only seismic instrument within 1000~km of the archipelago was installed on Kerguelen's main island in the 1980's. In this study we apply modern earthquake detection techniques to the continuous waveforms recorded by this seismometer over the past 20 years. We reveal that the Kerguelen archipelago islands hosts an abundant seismicity. This seismicity exhibits swarm-like characteristics in several clusters while at other locations the earthquakes appear more steady over time. We locate most events near the largest icecap of the main island. We speculate that the origin of the earthquakes can be linked to residual volcanic, magmatic, or hydrothermal activity at depth, all of which can be favored by flexural stress caused by the documented fast retreat of icecap. This seismicity may also indicate that the Kerguelen hotspot shows signs of unrest

    Anharmonicity And The Fano Effect In The To () Phonon Mode Of Gallium Phosphide

    Get PDF
    The Raman line shape of GaP has been measured under hydrostatic pressure up to 106 kbar at room temperature. The results are interpreted with a model involving a "Fano-type" resonance between the single TO () phonon mode and several double-phonon densities of states. This model allow us to determine for the first time the sign of the anharmonic interaction. In contradiction to previous interpretations, no anomalous behavior of the parameters used in this model is found as a function of the pressure. © 1983 The American Physical Society.28127334733

    Rayleigh wave group velocities in North-West Iran: SOLA Backus-Gilbert vs. Fast Marching tomographic methods

    Get PDF
    In this study, we focus on Northwest Iran and exploit a dataset of Rayleigh-wave group-velocity measurements obtained from ambient noise cross-correlations and earthquakes. We build group-velocity maps using the recently developed SOLA Backus-Gilbert linear tomographic scheme as well as the more traditional Fast-marching Surface-wave Tomography method. The SOLA approach produces robust, unbiased local averages of group velocities with detailed information on their local resolution and uncertainty; however, it does not as yet allow ray-path updates in the inversion process. The Fast-marching method, on the other hand, does allow ray-path updates, although it does not provide information on the resolution and uncertainties of the resulting models (at least not without great computational cost) and may suffer from bias due to model regularisation. The core of this work consists in comparing these two tomographic methods, in particular how they perform in the case of strong vs. weak seismic-velocity contrasts and good vs. poor data coverage. We demonstrate that the only case in which the Fast-marching inversion outperforms the SOLA inversion is for strong anomaly contrasts in regions with good path coverage; in all other configurations, the SOLA inversion produces more coherent anomalies with fewer artefacts

    Triggering of the 2014 M_w7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico

    Get PDF
    Since their discovery two decades ago, slow slip events have been shown to play an important role in accommodating strain in subduction zones. However, the physical mechanisms that generate slow slip and the relationships with earthquakes are unclear. Slow slip events have been recorded in the Guerrero segment of the Cocos–North America subduction zone. Here we use inversion of position time series recorded by a continuous GPS network to reconstruct the evolution of aseismic slip on the subduction interface of the Guerrero segment. We find that a slow slip event began in February 2014, two months before the magnitude (M_w) 7.3 Papanoa earthquake on 18 April. The slow slip event initiated in a region adjacent to the earthquake hypocentre and extended into the vicinity of the seismogenic zone. This spatio-temporal proximity strongly suggests that the Papanoa earthquake was triggered by the ongoing slow slip event. We demonstrate that the triggering mechanism could be either static stress increases in the hypocentral region, as revealed by Coulomb stress modelling, or enhanced weakening of the earthquake hypocentral area by the slow slip. We also show that the plate interface in the Guerrero area is highly coupled between slow slip events, and that most of the accumulated strain is released aseismically during the slow slip episodes
    • …
    corecore