438 research outputs found

    A shared mechanism of muscle wasting in cancer and Huntington's disease.

    Get PDF
    Skeletal muscle loss and dysfunction in aging and chronic diseases is one of the major causes of mortality in patients, and is relevant for a wide variety of diseases such as neurodegeneration and cancer. Muscle loss is accompanied by changes in gene expression and metabolism that lead to contractile impairment and likely affect whole-body metabolism and function. The changes may be caused by inactivity, inflammation, age-related factors or unbalanced nutrition. Although links with skeletal muscle loss have been found in diseases with disparate aetiologies, for example both in Huntingtons disease (HD) and cancer cachexia, the outcome is a similar impairment and mortality. This short commentary aims to summarize recent achievements in the identification of common mechanisms leading to the skeletal muscle wasting syndrome seen in diseases as different as cancer and HD. The latter is the most common hereditary neurodegenerative disorder and muscle wasting is an important component of its pathology. In addition, possible therapeutic strategies for anti-cachectic treatment will be also discussed in the light of their translation into possible therapeutic approaches for HD

    New Deterministic Algorithms for Solving Parity Games

    Full text link
    We study parity games in which one of the two players controls only a small number kk of nodes and the other player controls the nkn-k other nodes of the game. Our main result is a fixed-parameter algorithm that solves bipartite parity games in time kO(k)O(n3)k^{O(\sqrt{k})}\cdot O(n^3), and general parity games in time (p+k)O(k)O(pnm)(p+k)^{O(\sqrt{k})} \cdot O(pnm), where pp is the number of distinct priorities and mm is the number of edges. For all games with k=o(n)k = o(n) this improves the previously fastest algorithm by Jurdzi{\'n}ski, Paterson, and Zwick (SICOMP 2008). We also obtain novel kernelization results and an improved deterministic algorithm for graphs with small average degree

    Imitation in Large Games

    Full text link
    In games with a large number of players where players may have overlapping objectives, the analysis of stable outcomes typically depends on player types. A special case is when a large part of the player population consists of imitation types: that of players who imitate choice of other (optimizing) types. Game theorists typically study the evolution of such games in dynamical systems with imitation rules. In the setting of games of infinite duration on finite graphs with preference orderings on outcomes for player types, we explore the possibility of imitation as a viable strategy. In our setup, the optimising players play bounded memory strategies and the imitators play according to specifications given by automata. We present algorithmic results on the eventual survival of types

    Symmetric Strategy Improvement

    Full text link
    Symmetry is inherent in the definition of most of the two-player zero-sum games, including parity, mean-payoff, and discounted-payoff games. It is therefore quite surprising that no symmetric analysis techniques for these games exist. We develop a novel symmetric strategy improvement algorithm where, in each iteration, the strategies of both players are improved simultaneously. We show that symmetric strategy improvement defies Friedmann's traps, which shook the belief in the potential of classic strategy improvement to be polynomial

    Structural abnormalities of the optic nerve and retina in Huntington’s disease pre-clinical and clinical settings

    Get PDF
    Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein. HD-related pathological remodelling has been reported in HD mouse models and HD carriers. In this study, we studied structural abnormalities in the optic nerve by employing Spectral Domain Optical Coherence Tomography (SD-OCT) in pre-symptomatic HD carriers of Caucasian origin. Transmission Electron Microscopy (TEM) was used to investigate ultrastructural changes in the optic nerve of the well-established R6/2 mouse model at the symptomatic stage of the disease. We found that pre-symptomatic HD carriers displayed a significant reduction in the retinal nerve fibre layer (RNFL) thickness, including specific quadrants: superior, inferior and temporal, but not nasal. There were no other significant irregularities in the GCC layer, at the macula level and in the optic disc morphology. The ultrastructural analysis of the optic nerve in R6/2 mice revealed a significant thinning of the myelin sheaths, with a lamellar separation of the myelin, and a presence of myelonoid bodies. We also found a significant reduction in the thickness of myelin sheaths in peripheral nerves within the choroids area. Those ultrastructural abnormalities were also observed in HD photoreceptor cells that contained severely damaged membrane disks, with evident vacuolisation and swelling. Moreover, the outer segment of retinal layers showed a progressive disintegration. Our study explored structural changes of the optic nerve in pre- and clinical settings and opens new avenues for the potential development of biomarkers that would be of great interest in HD gene therapies

    Blackwell-Optimal Strategies in Priority Mean-Payoff Games

    Full text link
    We examine perfect information stochastic mean-payoff games - a class of games containing as special sub-classes the usual mean-payoff games and parity games. We show that deterministic memoryless strategies that are optimal for discounted games with state-dependent discount factors close to 1 are optimal for priority mean-payoff games establishing a strong link between these two classes

    Regular Strategies in Pushdown Reachability Games

    Get PDF
    International audienceWe show that positional winning strategies in pushdown reachability games can be implemented by deterministic finite state au-tomata of exponential size. Such automata read the stack and control state of a given pushdown configuration and output the set of winning moves playable from that position. This result can originally be attributed to Kupferman, Piterman and Vardi using an approach based on two-way tree automata. We present a more direct approach that builds upon the popular saturation technique. Saturation for analysing pushdown systems has been successfully implemented by Moped and WALi. Thus, our approach has the potential for practical applications to controller-synthesis problems

    PND38 International Comparison of Huntington Disease (HD) Burden

    Get PDF

    Perfect Information Stochastic Priority Games

    Get PDF
    International audienceWe introduce stochastic priority games - a new class of perfect information stochastic games. These games can take two different, but equivalent, forms. In stopping priority games a play can be stopped by the environment after a finite number of stages, however, infinite plays are also possible. In discounted priority games only infinite plays are possible and the payoff is a linear combination of the classical discount payoff and of a limit payoff evaluating the performance at infinity. Shapley games and parity games are special extreme cases of priority games
    corecore