230 research outputs found

    The Evolution of Spheroidal Galaxies in Different Environments

    Full text link
    We analyse the kinematic and chemical evolution of 203 distant spheroidal (elliptical and S0) galaxies at 0.2<z<0.8 which are located in different environments (rich clusters, low-mass clusters and in the field). VLT/FORS and CAHA/MOSCA spectra with intermediate-resolution have been acquired to measure the internal kinematics and stellar populations of the galaxies. From HST/ACS and WFPC2 imaging, surface brightness profiles and structural parameters were derived for half of the galaxy sample. The scaling relations of the Faber-Jackson relation and Kormendy relation as well as the Fundamental Plane indicate a moderate evolution for the whole galaxy population in each density regime. In all environments, S0 galaxies show a faster evolution than elliptical galaxies. For the cluster galaxies a slight radial dependence of the evolution out to one virial radius is found. Dividing the samples with respect to their mass, a mass dependent evolution with a stronger evolution of lower-mass galaxies (M<2x10^{11} M_{\sun}) is detected. Evidence for recent star formation is provided by blue colours and weak OII emission or strong H\delta absorption features in the spectra. The results are consistent with a down-sizing formation scenario which is independent from the environment of the galaxies.Comment: 4 pages, 2 figures, to be published in Astronomische Nachrichten (proceedings of Symposium 6 of the JENAM 2008, Vienna

    Substructure in lensing clusters and simulations

    Get PDF
    We present high-resolution mass reconstructions for five massive cluster-lenses spanning a redshift range from z=0.18z = 0.18--0.57 utilising archival {\it Hubble Space Telescope} ({\it HST}) data and applying galaxy-galaxy lensing techniques. These detailed mass models were obtained from the observations by combining constraints from the strong and weak lensing regimes. We ascribe local weak distortions in the shear maps to perturbations induced by the presence of galaxy haloes around individual bright early-type cluster member galaxies. This technique constrains the mass enclosed within an aperture for these subhaloes. We are sensitive to a specific mass range for these subhaloes, 101110^{11} -- 10^{12.5} \msun, which we associate with galaxy-scale subhaloes. Adopting a parametric model for the subhaloes, we also derive their velocity dispersion function and the aperture radius function. The mass spectrum of substructure in the inner regions of the observed clusters is directly compared with that in simulated clusters extracted from the {\it Millennium Simulation}. The massfunction, aperture radii and velocity dispersion function are compared in detail. Overall, we find good agreement between the distribution of substructure properties retrieved using the lensing analysis and those obtained from the simulation (truncated abstract).Comment: 15 pages, 5 figures, 2 tables, in press MNRA

    The Evolution of Field Early-Type Galaxies in the FDF and WHDF

    Full text link
    We explore the properties of 24 field early-type galaxies at 0.20<z<0.75 down to M_B<=-19.30 in a sample extracted from the FORS Deep Field and the William Herschel Deep Field. High S/N intermediate-resolution VLT spectroscopy was complemented by deep high-resolution HST/ACS imaging and additional ground-based multi-band photometry. To clarify the low level of star formation (SF) detected in some galaxies, we identify the amount of AGN activity in our sample using archive data of Chandra and XMM-Newton X-ray surveys. The B and K-band Faber-Jackson relations and the Fundamental Plane display a moderate evolution for the field early-type galaxies. Lenticular (S0) galaxies feature on average a stronger luminosity evolution and bluer rest-frame colours which can be explained that they comprise more diverse stellar populations compared to elliptical galaxies. The evolution of the FP can be interpreted as an average change in the dynamical mass-to-light ratio of our galaxies as <\Delta \log{(M/L_B)}/z>=-0.74\pm0.08. The M/L evolution of these field galaxies suggests a continuous mass assembly of field early-type galaxies during the last 5 Gyr, that gets support by recent studies of field galaxies up to z~1. Independent evidence for recent SF activity is provided by spectroscopic (OII em., Hdelta) and photometric (rest-frame colors) diagnostics. Based on the Hdelta absorption feature we detect a weak residual SF for galaxies that accounts for 5%-10% in the total stellar mass of these galaxies. The co-evolution in the luminosity and mass of our galaxies favours a downsizing formation process. We find some evidence that our galaxies experienced a period of SF quenching, possible triggered by AGN activity that is in good agreement with recent results on both observational and theoretical side. (abridged)Comment: 26 pages, 23 figures, accepted for publication in MNRA

    CLASH-VLT: Environment-driven evolution of galaxies in the z=0.209 cluster Abell 209

    Get PDF
    The analysis of galaxy properties and the relations among them and the environment, can be used to investigate the physical processes driving galaxy evolution. We study the cluster A209 by using the CLASH-VLT spectroscopic data combined with Subaru photometry, yielding to 1916 cluster members down to a stellar mass of 10^{8.6} Msun. We determine: i) the stellar mass function of star-forming and passive galaxies; ii) the intra-cluster light and its properties; iii) the orbits of low- and high-mass passive galaxies; and iv) the mass-size relation of ETGs. The stellar mass function of the star-forming galaxies does not depend on the environment, while the slope found for passive galaxies becomes flatter in the densest region. The color distribution of the intra-cluster light is consistent with the color of passive members. The analysis of the dynamical orbits shows that low-mass passive galaxies have tangential orbits, avoiding small pericenters around the BCG. The mass-size relation of low-mass passive ETGs is flatter than that of high mass galaxies, and its slope is consistent with that of field star-forming galaxies. Low-mass galaxies are also more compact within the scale radius of 0.65 Mpc. The ratio between stellar and number density profiles shows a mass segregation in the center. The comparative analysis of the stellar and total density profiles indicates that this effect is due to dynamical friction. Our results are consistent with a scenario in which the "environmental quenching" of low-mass galaxies is due to mechanisms such as harassment out to R200, starvation and ram-pressure stripping at smaller radii, as supported by the analysis of the mass function, of the dynamical orbits and of the mass-size relation of passive early-types in different regions. Our analyses support the idea that the intra-cluster light is formed through the tidal disruption of subgiant galaxies.Comment: 17 pages, 20 figures, A&A in pres

    Measurement of ion emission from plasmas obtained with a 600 fs KrF laser

    Get PDF
    Ion emission from plasmas obtained by the use of a 600 fs, 36 mJ KrF laser operating at 248 nm was measured and analysed for a variety of targets at different laser intensities. The intensity was set by changing the distance between the focusing lens and the target. It was found that the ions emitted originate from impurities and ions from the bulk of the target can be produced only in the subsequent shots. Proton emission was identified from some targets, but the energy of the protons was low (less than 12 keV). A new silicon carbide semiconductor detector proved to be applicable for the collection of the ions

    CLASH-VLT: Substructure in the galaxy cluster MACS J1206.2-0847 from kinematics of galaxy populations

    Get PDF
    In the effort to understand the link between the structure of galaxy clusters and their galaxy populations, we focus on MACSJ1206.2-0847 at z~0.44 and probe its substructure in the projected phase space through the spectrophotometric properties of a large number of galaxies from the CLASH-VLT survey. Our analysis is mainly based on an extensive spectroscopic dataset of 445 member galaxies, mostly acquired with VIMOS@VLT as part of our ESO Large Programme, sampling the cluster out to a radius ~2R200 (4 Mpc). We classify 412 galaxies as passive, with strong Hdelta absorption (red and blue galaxies, and with emission lines from weak to very strong. A number of tests for substructure detection are applied to analyze the galaxy distribution in the velocity space, in 2D space, and in 3D projected phase-space. Studied in its entirety, the cluster appears as a large-scale relaxed system with a few secondary, minor overdensities in 2D distribution. We detect no velocity gradients or evidence of deviations in local mean velocities. The main feature is the WNW-ESE elongation. The analysis of galaxy populations per spectral class highlights a more complex scenario. The passive galaxies and red strong Hdelta galaxies trace the cluster center and the WNW-ESE elongated structure. The red strong Hdelta galaxies also mark a secondary, dense peak ~2 Mpc at ESE. The emission line galaxies cluster in several loose structures, mostly outside R200. The observational scenario agrees with MACS J1206.2-0847 having WNW-ESE as the direction of the main cluster accretion, traced by passive galaxies and red strong Hdelta galaxies. The red strong Hdelta galaxies, interpreted as poststarburst galaxies, date a likely important event 1-2 Gyr before the epoch of observation. The emission line galaxies trace a secondary, ongoing infall where groups are accreted along several directions.Comment: A&A accepted, 19 pages, 30 figures, minor language change

    Evolution of the infrared Tully-Fisher relation up to z=1.4

    Full text link
    The Tully-Fisher relation (TFR) represents a connection between fundamental galaxy parameters, such as its total mass and the mass locked in stars. Therefore, the study of the evolution of this relation in the optical and infrared bands can provide valuable information about the evolution of the individual galaxies through the changes found in each band. This work aims to study the TFR at high redshift in the B, V, R, I, and K-bands by comparison with the local relations derived from a large sample of galaxies in the redshift range 0.1<z<0.3, processed in the same way, and with the same instrumental constraints that the high-redshift sample. Using the large photometric information available in the AEGIS database, we have studied the best procedure to obtain reliable k-corrections. Instrumental magnitudes are then k and extinction corrected and the absolute magnitudes derived, using the concordance cosmological model. The rotational velocities have been obtained from the widths of optical lines using DEEP2 spectra. Finally, morphology has been determined via visual classification of the HST images. We detect evolution in the B, V and R-band TFRs in the sense that galaxies were brighter in the past for the same rotation velocity. The change in luminosity is more noticeable in the bluer bands. This colour evolution, unnoticed in our previous work (Fern\'andez Lorenzo et al. 2009) has been detected thanks to the more reliable k-corrections carried out in this paper, which included photometry from B to IRAC bands. The change in the (V-K) and (R-I) colours (for a fixed velocity) could be interpreted as an ageing of the stellar populations as consequence of the star formation decrease since z=1.25. In addition, we conclude that spiral galaxies could have doubled their stellar masses in the last 8.6 Gyr.Comment: 14 pages, 10 figures; accepted in A&

    The Tully-Fisher relation of distant cluster galaxies

    Full text link
    We have measured maximum rotation velocities (Vrot) for a sample of 111 emission-line galaxies with 0.1 < z < 1, observed in the fields of 6 clusters. From these data we construct 'matched' samples of 58 field and 22 cluster galaxies, covering similar ranges in redshift (0.25 < z < 1.0) and luminosity (M_B < -19.5 mag), and selected in a homogeneous manner. We find the distributions of M_B, Vrot, and scalelength, to be very similar for the two samples. However, using the Tully-Fisher relation (TFR) we find that cluster galaxies are systematically offset with respect to the field sample by -0.7+-0.2 mag. This offset is significant at 3 sigma and persists when we account for an evolution of the field TFR with redshift. Extensive tests are performed to investigate potential differences between the measured emission lines and derived rotation curves of the cluster and field samples. However, no such differences which could affect the derived Vrot values and account for the offset are found. The most likely explanation for the TFR offset is that giant spiral galaxies in distant clusters are on average brighter, for a given rotation velocity, than those in the field. We discuss the potential mechanisms responsible for this, and consider alternative explanations.Comment: 19 pages, 13 figures, accepted by MNRA

    On positivity of Ehrhart polynomials

    Full text link
    Ehrhart discovered that the function that counts the number of lattice points in dilations of an integral polytope is a polynomial. We call the coefficients of this polynomial Ehrhart coefficients, and say a polytope is Ehrhart positive if all Ehrhart coefficients are positive (which is not true for all integral polytopes). The main purpose of this article is to survey interesting families of polytopes that are known to be Ehrhart positive and discuss the reasons from which their Ehrhart positivity follows. We also include examples of polytopes that have negative Ehrhart coefficients and polytopes that are conjectured to be Ehrhart positive, as well as pose a few relevant questions.Comment: 40 pages, 7 figures. To appear in in Recent Trends in Algebraic Combinatorics, a volume of the Association for Women in Mathematics Series, Springer International Publishin

    Archival biogenic micro- and nanostructure data analysis: Signatures of diagenetic systems

    Get PDF
    The present data in brief article provides additional data and information to our research article "Micro- and nanostructures reflect the degree of diagenetic alteration in modern and fossil brachiopod shell calcite: a multi-analytical screening approach (CL, FE-SEM, AFM, EBSD)" [1] (Casella et al.). We present fibre morphology, nano- and microstructure, as well as calcite crystal orientations and textures found in pristine, experimentally altered (hydrothermal and thermal), and diagenetically overprinted brachiopod shells. Combination of the screening tools AFM, FE-SEM, and EBSD allows to observe a significant change in microstructural and textural features with an increasing degree of laboratory based and naturally occurring diagenetic alteration. Amalgamation of neighbouring fibres was observed on the micrometre scale level, whereas progressive decomposition of biopolymers in the shells and fusion of nanoparticulate calcite crystals was detected on the nanometre scale. The presented data in this article and the study described in [1] allows for qualitative information on the degree of diagenetic alteration of fossil archives used for palaeoclimate reconstruction
    • …
    corecore