7 research outputs found

    Intestinal bacteria—a powerful weapon for fungal infections treatment

    Get PDF
    The morbidity and mortality of invasive fungal infections are rising gradually. In recent years, fungi have quietly evolved stronger defense capabilities and increased resistance to antibiotics, posing huge challenges to maintaining physical health. Therefore, developing new drugs and strategies to combat these invasive fungi is crucial. There are a large number of microorganisms in the intestinal tract of mammals, collectively referred to as intestinal microbiota. At the same time, these native microorganisms co-evolve with their hosts in symbiotic relationship. Recent researches have shown that some probiotics and intestinal symbiotic bacteria can inhibit the invasion and colonization of fungi. In this paper, we review the mechanism of some intestinal bacteria affecting the growth and invasion of fungi by targeting the virulence factors, quorum sensing system, secreting active metabolites or regulating the host anti-fungal immune response, so as to provide new strategies for resisting invasive fungal infection

    Asiatic acid improves high-fat-diet-induced osteoporosis in mice via regulating SIRT1/FOXO1 signaling and inhibiting oxidative stress

    No full text
    Asiatic acid can attenuate osteoporosis through suppressing adipogenic differentiation and osteoclastic differentiation. Oxidative stress enhances osteoclastic differentiation but represses osteogenic differentiation to promote osteoporosis. However, the role and mechanism of asiatic acid in osteoporosis have not been reported. Firstly, mice were fed with high-fatdiet (HFD) with or without asiatic acid for 16 weeks. Data from an automatic biochemical analyzer showed that HFD induced down-regulation of high-density lipoprotein (HDL) and an increase of serum levels of triglyceride (TG), total cholesterol (TC) and low-density lipoprotein (LDL). However, asiatic acid administration attenuated the decrease of HDL and increase of serum TG, TC and LDL in osteoporotic mice. Secondly, HFD induced high levels of malondialdehyde (MDA) and reactive oxygen species (ROS), low levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in osteoporotic mice. However, the levels of MDA, ROS, SOD and GSH-Px in osteoporotic mice were reversed by asiatic acid administration. (this section is unclear and requires revision) Asiatic acid administration reduced expression of c-telopeptide of type 1 collagen (CTX-1), enhanced alkaline phosphatase (ALP) and procollagen type 1 N-terminal propeptide (P1NP) in HFD-induced osteoporotic mice. (this section is unclear and requires revision) Thirdly, asiatic acid promoted calcium deposition in bone marrow cells and osteogenic differentiation in osteoporotic mice, but decreased ALP in bone marrow cells. Lastly, asiatic acid enhanced SIRT1 and nuclear FOXO1 (Nu-FOXO1) expression, while it reduced Acetyl FOXO1 (AcFOXO1) in osteoporotic mice. In conclusion, asiatic acid might inhibit oxidative stress and promote osteogenic differentiation through activating SIRT1/FOXO1 to attenuate HFD-induced osteoporosis in mice

    Quantification of Regional Ozone Pollution Characteristics and Its Temporal Evolution: Insights from Identification of the Impacts of Meteorological Conditions and Emissions

    No full text
    Ozone (O3) pollution has become the major new challenge after the suppression of PM2.5 to levels below the standard for the Pearl River Delta (PRD). O3 can be transported between nearby stations due to its longevity, leading stations with a similar concentration in a state of aggregation, which is an alleged regional issue. Investigations in such regional characteristics were rarely involved ever. In this study, the aggregation (reflected by the global Moran’s I index, GM), its temporal evolution, and the impacts from meteorological conditions and both local (i.e., produced within the PRD) and non-local (i.e., transported from outside the PRD) contributions were explored by spatial analysis and statistical modeling based on observation data. The results from 2007 to 2018 showed that the GM was positive overall, implying that the monitoring stations were surrounded by stations with similar ozone levels, especially during ozone seasons. State of aggregation was reinforced from 2007 to 2012, and remained stable thereafter. Further investigations revealed that GM values were independent of meteorological conditions, while closely related to local and non-local contributions, and its temporal variations were driven only by local contributions. Then, the correlation (R2) between O3 and meteorology was identified. Result demonstrated that the westerly belonged to temperature (T) and surface solar radiation (SSR) sensitive regions and the correlation between ozone and the two became intense with time. Relative humidity (RH) showed a negative correlation with ozone in most areas and periods, whereas correlations with u and v were positive for northerly winds and negative for southerly winds. Two important key points of such investigation are that, firstly, we defined the features of ozone pollution by characterizing the temporal variations in spatial discrepancies among all stations, secondly, we highlighted the significance of subregional cooperation within the PRD and regional cooperation with external environmental organizations

    Deciphering the role of particulate organic matter in soil nitrogen transformation in rice–rapeseed and rice–wheat rotation systems

    No full text
    Crop rotation affects the decomposition of soil organic matter (SOM) and thereby alter the composition of SOM fractions. It remains unclear how different SOM fractions impact soil nitrogen (N) transformation in various rotation systems. The aim of this study was to ascertain the role of particulate organic matter (POM)-a labile SOM fraction-in soil N transformation under various crop rotations. A paired plot experiment was conducted under two common cropping patterns, i.e., rice–rapeseed rotation (RR) vs. rice–wheat rotation (RW). Soil chemical composition and organic matter fraction before rice transplanting were compared between RR and RW systems after four years of crop rotations (2017–2021). With the same N inputs, the rice yield and N uptake under RR were 16.4 % and 13.2 % higher than those under RW, respectively. Compared with RW, RR resulted in higher carbon (C) and N contents in soil POM, despite minimal differences in total SOM. A larger potentially mineralizable N pool and a higher N mineralization rate occurred under RR than under RW, based on the results of soil net mineralization experiment. When POM was incubated alone, its contribution to potentially mineralizable N was 65.1 % and 61.3 % in RR and RW soils, respectively. Infrared spectroscopy revealed that in contrast with RW, RR promoted the accumulation of organic matter with high bioavailability (e.g., amides, carbohydrates, polysaccharides) in soil POM. This might be responsible for the higher gross mineralization and nitrification rates but lower gross immobilization rate under RR than under RW. Consequently, RR not only increased the contents of POMC and POMN but also improved the quality of POM fraction in soils. Findings of the present study demonstrate that POM plays a distinct role in soil N mineralization in various rotation systems. The discrepancy in POM content and composition resulting from various crop rotations leads to differences in soil N mineralization, which in turn affects the N supply and rice yield
    corecore