549 research outputs found

    Requirement of extracellular signal-regulated kinase/mitogen-activated protein kinase for long-term potentiation in adult mouse anterior cingulate cortex

    Get PDF
    Long-term potentiation (LTP) in the anterior cingulate cortex (ACC) is believed to be critical for higher brain functions including emotion, learning, memory and chronic pain. N-methyl-D-aspartate (NMDA) receptor-dependent LTP is well studied and is thought to be important for learning and memory in mammalian brains. As the downstream target of NMDA receptors, the extracellular signal-regulated kinase (ERK) in the mitogen-activated protein kinase (MAPK) cascade has been extensively studied for its involvement in synaptic plasticity, learning and memory in hippocampus. By contrast, the role of ERK in cingulate LTP has not been investigated. In this study, we examined whether LTP in ACC requires the activation of ERK. We found that P42/P44 MAPK inhibitors, PD98059 and U0126, suppressed the induction of cingulate LTP that was induced by presynaptic stimulation with postsynaptic depolarization (the pairing protocol). We also showed that cingulate LTP induced by two other different protocols was also blocked by PD98059. Moreover, we found that these two inhibitors had no effect on the maintenance of cingulate LTP. Inhibitors of c-Jun N-terminal kinase (JNK) and p38, other members of MAPK family, SP600125 and SB203850, suppressed the induction of cingulate LTP generated by the pairing protocol. Thus, our study suggests that the MAPK signaling pathway is involved in the induction of cingulate LTP and plays a critical role in physiological conditions

    Pharmacological isolation of postsynaptic currents mediated by NR2A- and NR2B-containing NMDA receptors in the anterior cingulate cortex

    Get PDF
    NMDA receptors (NMDARs) are involved in excitatory synaptic transmission and plasticity associated with a variety of brain functions, from memory formation to chronic pain. Subunit-selective antagonists for NMDARs provide powerful tools to dissect NMDAR functions in neuronal activities. Recently developed antagonist for NR2A-containing receptors, NVP-AAM007, triggered debates on its selectivity and involvement of the NMDAR subunits in bi-directional synaptic plasticity. Here, we re-examined the pharmacological properties of NMDARs in the anterior cingulate cortex (ACC) using NVP-AAM007 as well as ifenprodil, a selective antagonist for NR2B-containing NMDARs. By alternating sequence of drug application and examining different concentrations of NVP-AAM007, we found that the presence of NVP-AAM007 did not significantly affect the effect of ifenprodil on NMDAR-mediated EPSCs. These results suggest that NVP-AAM007 shows great preference for NR2A subunit and could be used as a selective antagonist for NR2A-containing NMDARs in the ACC

    Presynaptic regulation of the inhibitory transmission by GluR5-containing kainate receptors in spinal substantia gelatinosa

    Get PDF
    GluR5-containing kainate receptors (KARs) are known to be involved in nociceptive transmission. Our previous work has shown that the activation of presynaptic KARs regulates GABAergic and glycinergic synaptic transmission in cultured dorsal horn neurons. However, the role of GluR5-containing KARs in the modulation of inhibitory transmission in the spinal substantia gelatinosa (SG) in slices remains unknown. In the present study, pharmacological, electrophysiological and genetic methods were used to show that presynaptic GluR5 KARs are involved in the modulation of inhibitory transmission in the SG of spinal slices in vitro. The GluR5 selective agonist, ATPA, facilitated the frequency but not amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) in SG neurons. ATPA increased sIPSC frequency in all neurons with different firing patterns as delayed, tonic, initial and single spike patterns. The frequency of either GABAergic or glycinergic sIPSCs was significantly increased by ATPA. ATPA could also induce inward currents in all SG neurons recorded. The frequency, but not amplitude, of action potential-independent miniature IPSCs (mIPSCs) was also facilitated by ATPA in a concentration-dependent manner. However, the effect of ATPA on the frequency of either sIPSCs or mIPSCs was abolished in GluR5(-/- )mice. Deletion of the GluR5 subunit gene had no effect on the frequency or amplitude of mIPSCs in SG neurons. However, GluR5 antagonist LY293558 reversibly inhibited sIPSC and mIPSC frequencies in spinal SG neurons. Taken together, these results suggest that GluR5 KARs, which may be located at presynaptic terminals, contribute to the modulation of inhibitory transmission in the SG. GluR5-containing KARs are thus important for spinal sensory transmission/modulation in the spinal cord

    Quantum Information Processing using coherent states in cavity QED

    Full text link
    Using the highly detuned interaction between three-level Λ\Lambda-type atoms and coherent optical fields, we can realize the C-NOT gates from atoms to atoms, optical fields to optical fields, atoms to optical fields and optical fields to atoms. Based on the realization of the C-NOT gates we propose an entanglement purification scheme to purify a mixed entangled states of coherent optical fields. The simplicity of the current scheme makes it possible that it will be implemented in experiment in the near future.Comment: 5 pages, no figur

    Collaborative Knowledge Graph Fusion by Exploiting the Open Corpus

    Get PDF
    To alleviate the challenges of building Knowledge Graphs (KG) from scratch, a more general task is to enrich a KG using triples from an open corpus, where the obtained triples contain noisy entities and relations. It is challenging to enrich a KG with newly harvested triples while maintaining the quality of the knowledge representation. This paper proposes a system to refine a KG using information harvested from an additional corpus. To this end, we formulate our task as two coupled sub-tasks, namely join event extraction (JEE) and knowledge graph fusion (KGF). We then propose a Collaborative Knowledge Graph Fusion Framework to allow our sub-tasks to mutually assist one another in an alternating manner. More concretely, the explorer carries out the JEE supervised by both the ground-truth annotation and an existing KG provided by the supervisor. The supervisor then evaluates the triples extracted by the explorer and enriches the KG with those that are highly ranked. To implement this evaluation, we further propose a Translated Relation Alignment Scoring Mechanism to align and translate the extracted triples to the prior KG. Experiments verify that this collaboration can both improve the performance of the JEE and the KGF

    Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot

    Get PDF
    Funding: Strategic Priority Research Program of Chinese Academy of Sciences (XDA 20050203 (H.S.); Major Program of the NSFC 31590823 (H.S.); National Key R & D Program of China 2017YF0505200 (H.S.); NSFC (31670198 to J.C., 31560062 to Y.H.,31871271 to W.Z.); Science and Technology Research Program of KIB (NO.KIB2016005 to J.C.); Youth Innovation Promotion Association, CAS (J.C.), and Peking-Tsinghua Center for Life Science, the State Key Laboratory of Protein and PlantGene Research and Qidong-SLS Innovation Fund (W.Z.).The Hengduan Mountains (HDM) biodiversity hotspot exhibits exceptional alpine plant diversity. Here, we investigate factors driving intraspecific divergence within a HDM alpine species Salix brachista (Cushion willow), a common component of subnival assemblages. We produce a high-quality genome assembly for this species and characterize its genetic diversity, population structure and pattern of evolution by resequencing individuals collected across its distribution. We detect population divergence that has been shaped by a landscape of isolated sky island-like habitats displaying strong environmental heterogeneity across elevational gradients, combined with population size fluctuations that have occurred since approximately the late Miocene. These factors are likely important drivers of intraspecific divergence within Cushion willow and possibly other alpine plants with a similar distribution. Since intraspecific divergence is often the first step toward speciation, the same factors can be important contributors to the high alpine species diversity in the HDM.Publisher PDFPeer reviewe

    Toward a high-precision mass–energy test of the equivalence principle with atom interferometers

    Get PDF
    The equivalence principle (EP) is a basic assumption of the general relativity. The quantum test of the equivalence principle with atoms is an important way to examine the applicable scope of the current physical framework so as to discover new physics. Recently, we extended the traditional pure mass or energy tests of the equivalence principle to the joint test of mass–energy by atom interferometry (Zhou et al.,Phys.Rev.A 104,022822). The violation parameter of mass is constrained to η0 = (−0.8 ± 1.4) × 10–10 and that of internal energy to ηE = (0.0 ± 0.4) × 10–10 per reduced energy ratio. Here, we first briefly outline the joint test idea and experimental results, and then, we analyze and discuss how to improve the test accuracy. Finally, we report the latest experimental progress toward a high-precision mass–energy test of the equivalence principle. We realize atom interference fringes of 2T = 2.6 s in the 10-m long-baseline atom interferometer. This free evolution time T, to the best of our knowledge, is the longest duration realized in the laboratory, and the corresponding resolution of gravity measurement is 4.5 × 10−11 g per shot
    • …
    corecore