8,335 research outputs found

    Liquid Crystal-Solid Interface Structure at the Antiferroelectric-Ferroelectric Phase Transition

    Full text link
    Total Internal Reflection (TIR) is used to probe the molecular organization at the surface of a tilted chiral smectic liquid crystal at temperatures in the vicinity of the bulk antiferroelectric-ferroelectric phase transition. Data are interpreted using an exact analytical solution of a real model for ferroelectric order at the surface. In the mixture T3, ferroelectric surface order is expelled with the bulk ferroelectric-antiferroelectric transition. The conditions for ferroelectric order at the surface of an antiferroelectric bulk are presented

    The 7-channel FIR HCN Interferometer on J-TEXT Tokamak

    Full text link
    A seven-channel far-infrared hydrogen cyanide (HCN) laser interferometer has been established aiming to provide the line integrated plasma density for the J-TEXT experimental scenarios. A continuous wave glow discharge HCN laser designed with a cavity length 3.4 m is used as the laser source with a wavelength of 337 {\mu}m and an output power up to 100 mW. The system is configured as a Mach-Zehnder type interferometer. Phase modulation is achieved by a rotating grating, with a modulation frequency of 10 kHz which corresponds to the temporal resolution of 0.1 ms. The beat signal is detected by TGS detector. The phase shift induced by the plasma is derived by the comparator with a phase sensitivity of 0.06 fringe. The experimental results measured by the J-TEXT interferometer are presented in details. In addition, the inversed electron density profile done by a conventional approach is also given. The kinematic viscosity of dimethyl silicone and vibration control is key issues for the system performance. The laser power stability under different kinematic viscosity of silicone oil is presented. A visible improvement of measured result on vibration reduction is shown in the paper.Comment: conference (15th-International Symposium on Laser-Aided Plasma Diagnostics

    Hierarchical recurrent neural encoder for video representation with application to captioning

    Full text link
    © 2016 IEEE. Recently, deep learning approach, especially deep Convolutional Neural Networks (ConvNets), have achieved overwhelming accuracy with fast processing speed for image classification. Incorporating temporal structure with deep ConvNets for video representation becomes a fundamental problem for video content analysis. In this paper, we propose a new approach, namely Hierarchical Recurrent Neural Encoder (HRNE), to exploit temporal information of videos. Compared to recent video representation inference approaches, this paper makes the following three contributions. First, our HRNE is able to efficiently exploit video temporal structure in a longer range by reducing the length of input information flow, and compositing multiple consecutive inputs at a higher level. Second, computation operations are significantly lessened while attaining more non-linearity. Third, HRNE is able to uncover temporal tran-sitions between frame chunks with different granularities, i.e. it can model the temporal transitions between frames as well as the transitions between segments. We apply the new method to video captioning where temporal information plays a crucial role. Experiments demonstrate that our method outperforms the state-of-the-art on video captioning benchmarks

    Density Effect on Hadronization of a Quark Plasma

    Full text link
    The hadronization cross section in a quark plasma at finite temperature and density is calculated in the framework of Nambu--Jona-lasinio model with explicit chiral symmetry breaking. In apposition to the familiar temperature effect, the quark plasma at high density begins to hadronize suddenly. It leads to a sudden and strong increase of final state pions in relativistic heavy ion collisions which may be considered as a clear signature of chiral symmetry restoration.Comment: Latex2e, 11 pages, 7 Postscript figures, submitted to Phys. Rev.

    Acute infection of chinese macaques by a CCR5-tropic SHIV carrying a primary HIV-1 subtype B' envelope

    Get PDF
    The increasing prevalence of HIV-1 subtype B' in China and Southeast Asia calls for efforts to develop a relevant animal model to study viral transmission and pathogenesis. Because there are significant differences between subtype B' HIV-1 and other chimeric simian/human immunodeficiency viru (SHIVs) in the env gene, a novel SHIV, designated SHIV B'WHU, was generated by replacing counterparts of SHIVSF33 with tat/rev/vpu/env genes derived from a primary, CCR5-tropic, subtype B' HIV-1 strain of a Chinese patient. SHIV B'WHU was able to replicate in rhesus peripheral blood mononuclear cells and used CCR5 as its major coreceptor. Moreover, after serial passages in Chinese macaques, the in vivo infectivity of SHIV B' WHU was enhanced, yet no significant sequence changes were found in viral envelopes, and the virus did not change its CCR5-tropism. CD4 T-cell loss, however, was found in the intraepithelial lymphocytes of small intestines of infected macaques. Our findings have implications in understanding the early pathogenesis of SHIV B' WHU in Chinese macaques. Copyright © 2010 by Lippincott Williams & Wilkins.postprin
    • …
    corecore