143 research outputs found

    Passive Limb Movement Augments Ventilatory Response to CO\u3csub\u3e2\u3c/sub\u3e via Sciatic Inputs in Anesthetized Rats

    Get PDF
    Passive limb movement (PLM) in humans induces a phasic hyperpnea, but the underlying physiological mechanisms remain unclear. We asked whether PLM in anesthetized rats would produce a similar phasic hyperpnea associated with an augmented ventilatory (V̇E) response to CO2 that is dependent on sciatic afferents. The animals underwent 5 min threshold PLM, 3 min hypercapnia (5% CO2), and their combination (CO2 exposure at the end of 2nd min of 5-min PLM) before and after bilateral transection of the sciatic nerves. We found that a threshold PLM evoked a phasic hyperpnea, similar to that denoted in humans, and an augmented (V̇E) response to CO2. Both responses were greatly diminished by sciatic nerve transection. Moreover, similar responses were also evoked by electrically stimulating the central end of the transected sciatic nerve. Our findings suggest an ability of the sciatic afferents to augment the (V̇E) response to CO2 that likely contributes to the PLM-induced hyperpnea

    Class Attention to Regions of Lesion for Imbalanced Medical Image Recognition

    Full text link
    Automated medical image classification is the key component in intelligent diagnosis systems. However, most medical image datasets contain plenty of samples of common diseases and just a handful of rare ones, leading to major class imbalances. Currently, it is an open problem in intelligent diagnosis to effectively learn from imbalanced training data. In this paper, we propose a simple yet effective framework, named \textbf{C}lass \textbf{A}ttention to \textbf{RE}gions of the lesion (CARE), to handle data imbalance issues by embedding attention into the training process of \textbf{C}onvolutional \textbf{N}eural \textbf{N}etworks (CNNs). The proposed attention module helps CNNs attend to lesion regions of rare diseases, therefore helping CNNs to learn their characteristics more effectively. In addition, this attention module works only during the training phase and does not change the architecture of the original network, so it can be directly combined with any existing CNN architecture. The CARE framework needs bounding boxes to represent the lesion regions of rare diseases. To alleviate the need for manual annotation, we further developed variants of CARE by leveraging the traditional saliency methods or a pretrained segmentation model for bounding box generation. Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework with \textit{manual} bounding box annotations. A series of experiments on an imbalanced skin image dataset and a pneumonia dataset indicates that our method can effectively help the network focus on the lesion regions of rare diseases and remarkably improves the classification performance of rare diseases.Comment: Accepted by Neurocomputing on July 2023. 37 page

    Myocyte-Specific Overexpressing HDAC4 Promotes Myocardial Ischemia/Reperfusion Injury

    Get PDF
    Background: Histone deacetylases (HDACs) play a critical role in modulating myocardial protection and cardiomyocyte survivals. However, Specific HDAC isoforms in mediating myocardial ischemia/reperfusion injury remain currently unknown. We used cardiomyocyte-specific overexpression of active HDAC4 to determine the functional role of activated HDAC4 in regulating myocardial ischemia and reperfusion in isovolumetric perfused hearts. Methods: In this study, we created myocyte-specific active HDAC4 transgenic mice to examine the functional role of active HDAC4 in mediating myocardial I/R injury. Ventricular function was determined in the isovolumetric heart, and infarct size was determined using tetrazolium chloride staining. Results: Myocyte-specific overexpressing activated HDAC4 in mice promoted myocardial I/R injury, as indicated by the increases in infarct size and reduction of ventricular functional recovery following I/R injury. Notably, active HDAC4 overexpression led to an increase in LC-3 and active caspase 3 and decrease in SOD-1 in myocardium. Delivery of chemical HDAC inhibitor attenuated the detrimental effects of active HDAC4 on I/R injury, revealing the pivotal role of active HDAC4 in response to myocardial I/R injury. Conclusions: Taken together, these findings are the first to define that activated HDAC4 as a crucial regulator for myocardial ischemia and reperfusion injury

    Development of a cell-line model to mimic the pro-survival effect of nurse-like cells in chronic lymphocytic leukemia

    Get PDF
    The interaction between Chronic lymphocytic leukemia (CLL) cells and monocyte-derived nurse-like cells (NLCs) is fundamentally important to CLL biology. However, studies of how CLL cells and NLCs interact have been hampered by the need for freshly obtained CLL blood samples, coupled with wide variation in the number of monocytes present in the blood of individual patients. Here, we report the development and validation of a cell-line model of NLCs which overcomes these difficulties. Co-culture of primary CLL cells with THP-1 cells induced to differentiate into macrophages by phorbol 12-myristate 13-acetate (PMA) significantly reduced both spontaneous and fludarabine-induced cell death of leukemic cells. Furthermore, compared with their M1-polarized counterparts, M2-polarized macrophages derived from PMA-differentiated THP-1 cells conferred to CLL cells greater protection from spontaneous and fludarabine-induced apoptosis. Since NLCs resemble M2 tumor-associated macrophages, this cell-line model could be useful for investigating the mechanisms through which NLCs protect CLL cells from spontaneous and drug-induced apoptosis

    LEPREL1 Expression in Human Hepatocellular Carcinoma and Its Suppressor Role on Cell Proliferation

    Get PDF
    Background. Hepatocellular carcinoma (HCC) is one of the most aggressive malignancies worldwide. It is characterized by its high invasive and metastatic potential. Leprecan-like 1 (LEPREL1) has been demonstrated to be downregulated in the HCC tissues in previous proteomics studies. The present study is aimed at a new understanding of LEPREL1 function in HCC. Methods. Quantitative RT-PCR, immunohistochemical analysis, and western blot analysis were used to evaluate the expression of LEPREL1 between the paired HCC tumor and nontumorous tissues. The biology function of LEPREL1 was investigated by Cell Counting Kit-8 (CCK8) assay and colony formation assay in HepG2 and Bel-7402 cells. Results. The levels of LEPREL1 mRNA and protein were significantly lower in the HCC tissues as compared to those of the nontumorous tissues. Reduced LEPREL1 expression was not associated with conventional clinical parameters of HCC. Overexpression of LEPREL1 in HepG2 and Bel-7402 cells inhibited cell proliferation (P<0.01) and colony formation (P<0.05). LEPREL1 suppressed tumor cell proliferation through regulation of the cell cycle by downregulation of cyclins. Conclusions. Clinical parameters analysis suggested that LEPREL1 was an independent factor in the development of HCC. The biology function experiments showed that LEPREL1 might serve as a potential tumor suppressor gene by inhibiting the HCC cell proliferation
    corecore