179,329 research outputs found

    Semiparametric estimation of spectral density function for irregular spatial data

    Get PDF
    Estimation of the covariance structure of spatial processes is of fundamental importance in spatial statistics. In the literature, several non-parametric and semi-parametric methods have been developed to estimate the covariance structure based on the spectral representation of covariance functions. However,they either ignore the high frequency properties of the spectral density, which are essential to determine the performance of interpolation procedures such as Kriging, or lack of theoretical justification. We propose a new semi-parametric method to estimate spectral densities of isotropic spatial processes with irregular observations. The spectral density function at low frequencies is estimated using smoothing spline, while a parametric model is used for the spectral density at high frequencies, and the parameters are estimated by a method-of-moment approach based on empirical variograms at small lags. We derive the asymptotic bounds for bias and variance of the proposed estimator. The simulation study shows that our method outperforms the existing non-parametric estimator by several performance criteria.Comment: 29 pages, 2 figure

    Miniaturized Resonator and Bandpass Filter for Silicon-Based Monolithic Microwave and Millimeter-Wave Integrated Circuits

    Get PDF
    © 2018 IEEE. © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.This paper introduces a unique approach for the implementation of a miniaturized on-chip resonator and its application for the first-order bandpass filter (BPF) design. This approach utilizes a combination of a broadside-coupling technique and a split-ring structure. To fully understand the principle behind it, simplified LC equivalent-circuit models are provided. By analyzing these models, guidelines for implementation of an ultra-compact resonator and a BPF are given. To further demonstrate the feasibility of using this approach in practice, both the implemented resonator and the filter are fabricated in a standard 0.13-μm (Bi)-CMOS technology. The measured results show that the resonator can generate a resonance at 66.75 GHz, while the BPF has a center frequency at 40 GHz and an insertion loss of 1.7 dB. The chip size of both the resonator and the BPF, excluding the pads, is only 0.012mm 2 (0.08 × 0.144 mm 2).Peer reviewe

    Small-World Network Effect in Competing Glauber- and Kawasaki-type Dynamics

    Full text link
    In this article, we investigate the competing Glauber-type and Kawasaki-type dynamics with small-world network (SWN) effect, in the framework of the Gaussian model. The Glauber-type single-spin transition mechanism with probability p simulates the contact of the system with a heat bath and the Kawasaki-type dynamics with probability 1-p simulates an external energy flux. Two different types of SWN effect are studied, one with the total number of links increased and the other with it conserved. The competition of the dynamics leads to an interesting self-organization process that can be characterized by a phase diagram with two identifiable temperatures. By studying the modification of the phase diagrams, the SWN effect on the two dynamics is analyzed. For the Glauber-type dynamics, more important is the altered average coordination number while the Kawasaki-type dynamics is enhanced by the long range spin interaction and redistribution.Comment: 18 pages, 1 figure. Accepted for publication in "The European Physical Journal B (EPJB)

    Design of millimeter-wave bandpass filters with broad bandwidth in Si-based technology

    Get PDF
    In this paper, a novel design approach is proposed for on-chip bandpass filter (BPF) design with improved passband flatness and stopband suppression. The proposed approach simply uses a combination of meander-line structures with metal-insulator-metal (MIM) capacitors. To demonstrate the insight of this approach, a simplified equivalent LC-circuit model is used for theoretical analysis. Using the analyzed results as a guideline along with a full-wave electromagnetic (EM) simulator, two BPFs are designed and implemented in a standard 0.13-μm (Bi)-CMOS technology. The measured results show that good agreements between EM simulated and measured results are achieved. For the first BPF, the return loss is better than 10 dB from 13.5 to 32 GHz, which indicates a fractional bandwidth (FBW) of more than 78%. In addition, the minimum insertion loss of 2.3 dB is achieved within the frequency range from 17 to 27 GHz and the in-band magnitude ripple is less than 0.1 dB. The chip size of this design, excluding the pads, is 0.148 mm 2 . To demonstrate a miniaturized design, a second design example is given. The return loss is better than 10 dB from 17.3 to 35.9 GHz, which indicates an FBW of more than 70%. In addition, the minimum insertion loss of 2.6 dB is achieved within the frequency range from 21.4 to 27.7 GHz and the in-band magnitude ripple is less than 0.1 dB. The chip size of the second design, excluding the pads, is only 0.066 mm 2 .Peer reviewe

    Matroidal structure of generalized rough sets based on symmetric and transitive relations

    Full text link
    Rough sets are efficient for data pre-process in data mining. Lower and upper approximations are two core concepts of rough sets. This paper studies generalized rough sets based on symmetric and transitive relations from the operator-oriented view by matroidal approaches. We firstly construct a matroidal structure of generalized rough sets based on symmetric and transitive relations, and provide an approach to study the matroid induced by a symmetric and transitive relation. Secondly, this paper establishes a close relationship between matroids and generalized rough sets. Approximation quality and roughness of generalized rough sets can be computed by the circuit of matroid theory. At last, a symmetric and transitive relation can be constructed by a matroid with some special properties.Comment: 5 page
    • …
    corecore