32,096 research outputs found
Alternating Back-Propagation for Generator Network
This paper proposes an alternating back-propagation algorithm for learning
the generator network model. The model is a non-linear generalization of factor
analysis. In this model, the mapping from the continuous latent factors to the
observed signal is parametrized by a convolutional neural network. The
alternating back-propagation algorithm iterates the following two steps: (1)
Inferential back-propagation, which infers the latent factors by Langevin
dynamics or gradient descent. (2) Learning back-propagation, which updates the
parameters given the inferred latent factors by gradient descent. The gradient
computations in both steps are powered by back-propagation, and they share most
of their code in common. We show that the alternating back-propagation
algorithm can learn realistic generator models of natural images, video
sequences, and sounds. Moreover, it can also be used to learn from incomplete
or indirect training data
Byzantine Attack and Defense in Cognitive Radio Networks: A Survey
The Byzantine attack in cooperative spectrum sensing (CSS), also known as the
spectrum sensing data falsification (SSDF) attack in the literature, is one of
the key adversaries to the success of cognitive radio networks (CRNs). In the
past couple of years, the research on the Byzantine attack and defense
strategies has gained worldwide increasing attention. In this paper, we provide
a comprehensive survey and tutorial on the recent advances in the Byzantine
attack and defense for CSS in CRNs. Specifically, we first briefly present the
preliminaries of CSS for general readers, including signal detection
techniques, hypothesis testing, and data fusion. Second, we analyze the spear
and shield relation between Byzantine attack and defense from three aspects:
the vulnerability of CSS to attack, the obstacles in CSS to defense, and the
games between attack and defense. Then, we propose a taxonomy of the existing
Byzantine attack behaviors and elaborate on the corresponding attack
parameters, which determine where, who, how, and when to launch attacks. Next,
from the perspectives of homogeneous or heterogeneous scenarios, we classify
the existing defense algorithms, and provide an in-depth tutorial on the
state-of-the-art Byzantine defense schemes, commonly known as robust or secure
CSS in the literature. Furthermore, we highlight the unsolved research
challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
This study investigates the effects of Markov chain Monte Carlo (MCMC)
sampling in unsupervised Maximum Likelihood (ML) learning. Our attention is
restricted to the family of unnormalized probability densities for which the
negative log density (or energy function) is a ConvNet. We find that many of
the techniques used to stabilize training in previous studies are not
necessary. ML learning with a ConvNet potential requires only a few
hyper-parameters and no regularization. Using this minimal framework, we
identify a variety of ML learning outcomes that depend solely on the
implementation of MCMC sampling.
On one hand, we show that it is easy to train an energy-based model which can
sample realistic images with short-run Langevin. ML can be effective and stable
even when MCMC samples have much higher energy than true steady-state samples
throughout training. Based on this insight, we introduce an ML method with
purely noise-initialized MCMC, high-quality short-run synthesis, and the same
budget as ML with informative MCMC initialization such as CD or PCD. Unlike
previous models, our energy model can obtain realistic high-diversity samples
from a noise signal after training.
On the other hand, ConvNet potentials learned with non-convergent MCMC do not
have a valid steady-state and cannot be considered approximate unnormalized
densities of the training data because long-run MCMC samples differ greatly
from observed images. We show that it is much harder to train a ConvNet
potential to learn a steady-state over realistic images. To our knowledge,
long-run MCMC samples of all previous models lose the realism of short-run
samples. With correct tuning of Langevin noise, we train the first ConvNet
potentials for which long-run and steady-state MCMC samples are realistic
images.Comment: Code available at: https://github.com/point0bar1/ebm-anatom
Quantitative Robustness Analysis of Quantum Programs (Extended Version)
Quantum computation is a topic of significant recent interest, with practical
advances coming from both research and industry. A major challenge in quantum
programming is dealing with errors (quantum noise) during execution. Because
quantum resources (e.g., qubits) are scarce, classical error correction
techniques applied at the level of the architecture are currently
cost-prohibitive. But while this reality means that quantum programs are almost
certain to have errors, there as yet exists no principled means to reason about
erroneous behavior. This paper attempts to fill this gap by developing a
semantics for erroneous quantum while-programs, as well as a logic for
reasoning about them. This logic permits proving a property we have identified,
called -robustness, which characterizes possible "distance" between
an ideal program and an erroneous one. We have proved the logic sound, and
showed its utility on several case studies, notably: (1) analyzing the
robustness of noisy versions of the quantum Bernoulli factory (QBF) and quantum
walk (QW); (2) demonstrating the (in)effectiveness of different error
correction schemes on single-qubit errors; and (3) analyzing the robustness of
a fault-tolerant version of QBF.Comment: 34 pages, LaTeX; v2: fixed typo
Low dose and fast grating-based x-ray phase-contrast imaging using the integrating-bucket phase modulation technique
X-ray phase-contrast imaging has experienced rapid development over the last
few decades, and in this technology, the phase modulation strategy of
phase-stepping is used most widely to measure the sample's phase signal.
However, because of its discontinuous nature, phase-stepping has the defects of
worse mechanical stability and high exposure dose, which greatly hinder its
wide application in dynamic phase measurement and potential clinical
applications. In this manuscript, we demonstrate preliminary research on the
use of integrating-bucket phase modulation method to retrieve the phase
information in grating-based X-ray phase-contrast imaging. Experimental results
showed that our proposed method can be well employed to extract the
differential phase-contrast image, compared with the current mostly used
phase-stepping strategy, advantage of integrating-bucket phase modulation
technique is that fast measurement and low dose are promising.Comment: 14 pages, 6 figure
- …