1,631 research outputs found

    Characterizing the Quantum Phase Transition using a Flat Band in Circuit QED Lattices

    Get PDF
    We show the superradiant phase transition (SPT) can control the existence of flat band in an extended Dicke-Hubbard lattice [1

    Single-photon-triggered quantum chaos

    Get PDF
    We demonstrate how to manipulate quantum chaos with a single photon in a hybrid quantum device combining cavity QED and optomechanics. Specifically, we show that this system changes between integrable and chaotic relying on the photon-state of the injected field. This onset of chaos originates from the photon-dependent chaotic threshold of the qubit-field coupling induced by the optomechanical interaction. By deriving the Loschmidt Echo we observe clear differences in the sensitivity to perturbations in the regular versus chaotic regimes. We also present classical analog of this chaotic behavior, and find good correspondence between chaotic quantum dynamics and classical physics. Our work opens up a new route to achieve quantum manipulations, which are crucial elements in engineering new types of on-chip quantum devices and quantum information science.Comment: 11 pages, 4 figure

    Exceptional Point Generated Robust Asymmetric High-Order Harmonics

    Get PDF
    We propose a metallic-silicon system with a complex optical potential modulated along the length of the waveguide for a robust higher harmonic generation. For right moving fields when the strength of non-Hermiticity becomes equal to the real part of the optical potential, the dynamical equations associated with modal field amplitudes in our proposed system are described by a Jordan form Hamiltonian. This ultimately will allow for a unidirectional higher frequency generation which always has a maximum value for a specific length of the waveguide irrespective of the geometrical imperfections in the design of the waveguide. Furthermore, the phase of the generated higher harmonic mode becomes independent of the coupling between the fundamental frequency and higher harmonic one. Unlike other proposed spatiotemporal modulated systems when the system has a Jordan form Hamiltonian, the fundamental mode remains reciprocal while the harmonic generation is non-reciprocal. Consequently, while the proposed device cannot be used as an optical isolator it can be used for many other devices such as laser cavities, interferometry, and holographic processes
    • …
    corecore