273 research outputs found

    Protein kinase Cα downregulation via siRNA-PKCα released from foldable capsular vitreous body in cultured human retinal pigment epithelium cells

    Get PDF
    We previously found that downregulation of protein kinase Cα (PKCα) can inhibit retinal pigment epithelium (RPE) cell proliferation involved in the development of proliferative vitreoretinopathy (PVR). In this study, we tested whether PKCα could be downregulated via small interfering RNA (siRNA)-PKCα released from foldable capsular vitreous body (FCVB) in cultured human RPE cells. SiRNA-PKCα content, determined by ultraviolet (UV) spectrophotometer, was released from FCVB containing 200, 300, 400, 500, and 600 nm siRNA-PKCα in a time-dependent manner from 1 to 96 hours and a dose-dependent manner at five concentrations. The content (y) had a good linear relationship with time (x), especially in the 600 nm siRNA-PKCα group (y = 16.214x, R2 = 0.9809). After treatment with siRNA-PKCα released from FCVBs, the PKCα was significantly decreased by RT-PCR, Western blot, and immunofluorescence analysis in RPE cells. These results indicate that PKCα was significantly downregulated by siRNA-PKCα released from FCVB in human RPE cells and provide us with a new avenue to prevent PVR

    Field and Laboratory Studies on Pathological and Biochemical Characterization of Microcystin-Induced Liver and Kidney Damage in the Phytoplanktivorous Bighead Carp

    Get PDF
    Field and experimental studies were conducted to investigate pathological characterizations and biochemical responses in the liver and kidney of the phytoplanktivorous bighead carp after intraperitoneal (i.p.) administration of microcystins (MCs) and exposure to natural cyanobacterial blooms in Meiliang Bay, Lake Taihu. Bighead carp in field and laboratory studies showed a progressive recovery of structure and function in terms of histological, cellular, and biochemical features. In laboratory study, when fish were i.p. injected with extracted MCs at the doses of 200 and 500 μg MC-LReq/kg body weight, respectively, liver pathology in bighead carp was observed in a time dose-dependent manner within 24 h postinjection and characterized by disruption of liver structure, condensed cytoplasm, and the appearance of massive hepatocytes with karyopyknosis, karyorrhexis, and karyolysis. In comparison with previous studies on other fish, bighead carp in field study endured higher MC doses and longer-term exposure, but displayed less damage in the liver and kidney. Ultrastructural examination in the liver revealed the presence of lysosome proliferation, suggesting that bighead carp might eliminate or lessen cell damage caused by MCs through lysosome activation. Biochemically, sensitive responses in the antioxidant enzymes and higher basal glutathione concentrations might be responsible for their powerful resistance to MCs, suggesting that bighead carp can be used as biomanipulation fish to counteract cyanotoxin contamination
    • …
    corecore