60 research outputs found
Survival Benefit of Neoadjuvant Chemotherapy in Non-small Cell Lung Cancer: An Updated Meta-Analysis of 13 Randomized Control Trials
IntroductionThe survival effectiveness of neoadjuvant chemotherapy in non-small cell lung cancer (NSCLC) is still unclear based on the study of most up-to-date literatures. This article contributes to this problem by conducting an updated meta-analysis.MethodsBased on Burdett et al's (J Thorac Oncol 2006;1:611–621) systematic review, this meta-analysis was conducted. Articles were searched electrically. The possible survival benefit of neoadjuvant chemotherapy was assessed by hazard ratio (HR) in terms of overall survival. A subgroup meta-analysis with only stage III NSCLC was also conducted. The software of Review Manager was used for data management.ResultsThirteen randomized control trials, 6 of which were new ones, were included into this meta-analysis. The overall survival of NSCLC patients in neoadjuvant chemotherapy arm were improved significantly, comparing with those in surgery-alone arm (combined HR = 0.84; 95% confidence interval, 0.77–0.92; p = 0.0001). When only patients with stage III NSCLC were considered, the result was similar (combined HR = 0.84; 95% confidence interval, 0.75–0.95; p = 0.005).ConclusionNeoadjuvant chemotherapy, as an addition of surgery, would significantly improve the overall survival of operable NSCLC patients, including patients with stage III NSCLC
Interfacial States and Fano-Feshbach Resonance in Graphene-Silicon Vertical Junction
Interfacial quantum states are drawing tremendous attention recently because of their importance in design of low-dimensional quantum heterostructures with desired charge, spin, or topological properties. Although most studies of the interfacial exchange interactions were mainly performed across the interface vertically, the lateral transport nowadays is still a major experimental method to probe these interactions indirectly. In this Letter, we fabricated a graphene and hydrogen passivated silicon interface to study the interfacial exchange processes. For the first time we found and confirmed a novel interfacial quantum state, which is specific to the 2D–3D interface. The vertically propagating electrons from silicon to graphene result in electron oscillation states at the 2D–3D interface. A harmonic oscillator model is used to explain this interfacial state. In addition, the interaction between this interfacial state (discrete energy spectrum) and the lateral band structure of graphene (continuous energy spectrum) results in Fano–Feshbach resonance. Our results show that the conventional description of the interfacial interaction in low-dimensional systems is valid only in considering the lateral band structure and its density-of-states and is incomplete for the ease of vertical transport. Our experimental observation and theoretical explanation provide more insightful understanding of various interfacial effects in low-dimensional materials, such as proximity effect, quantum tunneling, etc. More important, the Fano–Feshbach resonance may be used to realize all solid-state and scalable quantum interferometers
Adiponectin Haploinsufficiency Promotes Mammary Tumor Development in MMTV-PyVT Mice by Modulation of Phosphatase and Tensin Homolog Activities
Background: Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive. Methodology/Principal Findings: In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT) transgenic mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice, accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K)/Akt/beta-catenin signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN) activities. Further analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1) and thioredoxin reductase (TrxR1) were significantly elevated, whereas treatment with either curcumin, an irreversible inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of TrxR1. Conclusion: Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and activation of PI3K/ Akt signalling pathway through a mechanism involving Trx1/TrxR1 redox regulations. © 2009 Lam et al.published_or_final_versio
Rapid Identification of Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides from Ruditapes philippinarum Hydrolysate
Dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides were rapidly identified from Ruditapes philippinarum hydrolysate. The hydrolysate was fractionated by ethanol precipitation and preparative reverse phase high-performance liquid chromatography (RP-HPLC). The fraction which showed the highest DPP-IV inhibitory activity was then analyzed by a high-throughput nano-liquid chromatography electrospray ionization tandem mass spectrometry (nano-LC ESI-MS/MS) method, and the sequences of peptides were identified based on the MS/MS spectra against the Mollusca protein data from the UniProt database. In total, 50 peptides were identified. Furthermore, molecular docking was used to identify potential DPP-IV inhibitors from the identified peptides. Docking results suggested that four peptides: FAGDDAPR, LAPSTM, FAGDDAPRA, and FLMESH, could bind pockets of DPP-IV through hydrogen bonds, π-π bonds, and charge interactions. The four peptides were chemically synthesized and tested for DPP-IV inhibitory activity. The results showed that they possessed DPP-IV inhibitory activity with IC50 values of 168.72 μM, 140.82 μM, 393.30 μM, and >500 μM, respectively. These results indicate that R. philippinarum-derived peptides may have potential as functional food ingredients for the prevention of diabetes
- …