76 research outputs found

    Mirror symmetric Gamma conjecture for del Pezzo surfaces

    Full text link
    For a del Pezzo surface of degree 3\geq 3, we compute the oscillatory integral for its mirror Landau-Ginzburg model in the sense of Gross-Hacking-Keel [Mark Gross, Paul Hacking, and Sean Keel, "Mirror symmetry for log Calabi-Yau surfaces I". In: Publ. Math. Inst. Hautes Etudes Sci. 122 (2015), pp. 65-168]. We explicitly construct the mirror cycle of a line bundle and show that the leading order of the integral on this cycle involves the twisted Chern character and the Gamma class. This proves a version of the Gamma conjecture for non-toric Fano surfaces with an arbitrary K-group insertion.Comment: 26 pages, 10 figure

    Efficiently Disassemble-and-Pack for Mechanism

    Full text link
    In this paper, we present a disassemble-and-pack approach for a mechanism to seek a box which contains total mechanical parts with high space utilization. Its key feature is that mechanism contains not only geometric shapes but also internal motion structures which can be calculated to adjust geometric shapes of the mechanical parts. Our system consists of two steps: disassemble mechanical object into a group set and pack them within a box efficiently. The first step is to create a hierarchy of possible group set of parts which is generated by disconnecting the selected joints and adjust motion structures of parts in groups. The aim of this step is seeking total minimum volume of each group. The second step is to exploit the hierarchy based on breadth-first-search to obtain a group set. Every group in the set is inserted into specified box from maximum volume to minimum based on our packing strategy. Until an approximated result with satisfied efficiency is accepted, our approach finish exploiting the hierarchy.Comment: 2 pages, 2 figure

    Optimatization of sample points for monitoring arable land quality by simulated annealing while considering spatial variations

    Get PDF
    This presentation was given as part of the GIS Day@KU symposium on November 16, 2016. For more information about GIS Day@KU activities, please see http://gis.ku.edu/gisday/2016/.Arable land is the basis of food production, the most valuable input in agricultural production, and an important factor in sustainable agricultural development and national food security. In China, the reduction and degradation of arable land due to industrialization and urbanization has gradually emerged as one of the most prominen challenges. In this context, the long-term dynamic monitoring of arable land quality becomes important for protecting arable land resources. However, little consideration has been given to optimizing sample points number and layout in previous monitoring studies on arable land quality. When considering the optimization of sample points, various strategies are needed, depending on the indicators. In addition, the distributio of soil properties displays spatial variations. However, existing sampling studies have paid little attention to spatial variations during scenarios with multiple indicators.Therefore, it is necessary to further investigate how to improve the efficiency and accuracy of arable land quality monitoring and evaluation by optimizing the number and layout of sample points when there are spatial variations in multiple indicators.Platinum Sponsors: KU Department of Geography and Atmospheric Science. Gold Sponsors: Enertech, KU Environmental Studies Program, KU Libraries. Silver Sponsors: Douglas County, Kansas, KansasView, State of Kansas Data Access & Support Center (DASC) and the KU Center for Global and International Studies

    On Knowledge Editing in Federated Learning: Perspectives, Challenges, and Future Directions

    Full text link
    As Federated Learning (FL) has gained increasing attention, it has become widely acknowledged that straightforwardly applying stochastic gradient descent (SGD) on the overall framework when learning over a sequence of tasks results in the phenomenon known as ``catastrophic forgetting''. Consequently, much FL research has centered on devising federated increasing learning methods to alleviate forgetting while augmenting knowledge. On the other hand, forgetting is not always detrimental. The selective amnesia, also known as federated unlearning, which entails the elimination of specific knowledge, can address privacy concerns and create additional ``space'' for acquiring new knowledge. However, there is a scarcity of extensive surveys that encompass recent advancements and provide a thorough examination of this issue. In this manuscript, we present an extensive survey on the topic of knowledge editing (augmentation/removal) in Federated Learning, with the goal of summarizing the state-of-the-art research and expanding the perspective for various domains. Initially, we introduce an integrated paradigm, referred to as Federated Editable Learning (FEL), by reevaluating the entire lifecycle of FL. Secondly, we provide a comprehensive overview of existing methods, evaluate their position within the proposed paradigm, and emphasize the current challenges they face. Lastly, we explore potential avenues for future research and identify unresolved issues.Comment: 7 pages, 1 figure, 2 tabel

    LncRNA SENCR suppresses abdominal aortic aneurysm formation by inhibiting smooth muscle cells apoptosis and extracellular matrix degradation

    Get PDF
    Abdominal aortic aneurysm (AAA) is a progressive chronic dilatation of the abdominal aorta without effective medical treatment. This study aims to clarify the potential of long non-coding RNA SENCR as a treatment target in AAA. Angiotensin II (Ang-II) was used to establish AAA model in vitro and in vivo. Reverse transcription quantitative PCR and western blot were performed to measure the expression of SENCR and proteins, respectively. Annexin V-FITC/PI double staining was carried out to detect the apoptotic rate in vascular smooth muscle cells (VSMCs), and cell apoptosis in aortic tissues was determined by TUNEL staining. Besides, hematoxylin and eosin and Elastica van Gieson staining were performed for histological analysis of aortic tissues. SENCR was downregulated in AAA tissues and Ang-II-stimulated VSMCs. Overexpression of SENCR could inhibit Ang-II-induced VSMC apoptosis, while inhibition of SENCR facilitated Ang-II-induced VSMC apoptosis. Moreover, the expression of matrix metalloproteinase (MMP)-2 and MMP-9 in Ang-II-induced VSMCs was reduced following SENCR overexpression, while tissue inhibitor of metalloproteinases 1 (TIMP-1) expression was increased. In vivo, overexpression of SENCR improved the pathological change in aortic tissues and the damage in arterial wall elastic fibers induced by Ang-II, as well as suppressed Ang-II-induced cell apoptosis and extracellular matrix degradation. Overall, SENCR was decreased in AAA. Overexpression of SENCR inhibited AAA formation via inhibition of VSMC apoptosis and extracellular matrix degradation. We provided a reliable evidence for SENCR acting as a potential target for AAA treatment

    Single-Cell Rna Sequencing Deconvolutes the in Vivo Heterogeneity of Human Bone Marrow-Derived Mesenchymal Stem Cells

    Get PDF
    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stromal cells that have a critical role in the maintenance of skeletal tissues such as bone, cartilage, and the fat in bone marrow. In addition to providing microenvironmental support for hematopoietic processes, BM-MSCs can differentiate into various mesodermal lineages including osteoblast/osteocyte, chondrocyte, and adipocyte that are crucial for bone metabolism. While BM-MSCs have high cell-to-cell heterogeneity in gene expression, the cell subtypes that contribute to this heterogeneity in vivo in humans have not been characterized. To investigate the transcriptional diversity of BM-MSCs, we applied single-cell RNA sequencing (scRNA-seq) on freshly isolated CD271+ BM-derived mononuclear cells (BM-MNCs) from two human subjects. We successfully identified LEPRhi CD45low BM-MSCs within the CD271+ BM-MNC population, and further codified the BM-MSCs into distinct subpopulations corresponding to the osteogenic, chondrogenic, and adipogenic differentiation trajectories, as well as terminal-stage quiescent cells. Biological functional annotations of the transcriptomes suggest that osteoblast precursors induce angiogenesis coupled with osteogenesis, and chondrocyte precursors have the potential to differentiate into myocytes. We also discovered transcripts for several clusters of differentiation (CD) markers that were either highly expressed (e.g., CD167b, CD91, CD130 and CD118) or absent (e.g., CD74, CD217, CD148 and CD68) in BM-MSCs, representing potential novel markers for human BM-MSC purification. This study is the first systematic in vivo dissection of human BM-MSCs cell subtypes at the single-cell resolution, revealing an insight into the extent of their cellular heterogeneity and roles in maintaining bone homeostasis
    corecore