1,969 research outputs found
N-(Quinolin-8-yl)quinoline-2-carboxamide
In the title compound, C19H13N3O, the dihedral angle between the two quinoline systems is 11.54 (3)°. The molecular conformation is stabilized by intramolecular N—H⋯N and C—H⋯O hydrogen bonds, with N—H⋯N being bifurcated towards the two N atoms of the two quinoline rings. In the crystal, there are weak intermolecular π–π interactions present involving the quinoline rings [centroid–centroid distance 3.7351 (14) Å]
Vibration suppression using fractional-order disturbance observer based adaptive grey predictive controller
A novel control strategy is proposed for vibration suppression using an integration of a fractional-order disturbance observer (FDOB) and an adaptive grey predictive controller (AGPC). AGPC is utilized to realize outer loop control for better transient performance by predicting system outputs ahead with metabolic GM(1,1) model, and an adaptive step switching module is adopted for the grey predictor in AGPC. FDOB is used to obtain disturbance estimate and generate compensation signal, and as the order of Q-filter is expanded to real-number domain, FDOB has a wider range to select a suitable tradeoff between robustness and vibration suppression. For implementation of the fractional order Q-filter, broken-line approximation method is introduced. The proposed control strategy is simple in control-law derivation, and its effectiveness is validated by numerical simulations
Effect of human activated NRAS on replication of delNS1 H5N1 influenza virus in MDCK cells
<p>Abstract</p> <p>Background</p> <p>RAS, coded by <it>ras </it>proto-oncogenes, played an important role in signal transmission to regulate cell growth and differentiation. Host activation of RAS was significant for IFN-sensitive vaccinia virus (delE3L) or attenuate influenza virus in unallowable cells.</p> <p>Results</p> <p>Huamn <it>NRAS </it>gene was activated by mutating in codon 61. Then the activation of NRAS was detected by western blot in MDCK cells. The delNS1 H5N1 influenza virus with deletion of NS1 eIF4GI binding domain was weak multiplication in MDCK cells. And the replication of delNS1 virus and expression of IFN-beta and IRF-3 were detected by Real-time PCR in MDCK cells infected with delNS1 virus. It was found that the delNS1 virus had a significant increase in MDCK cells when the NRAS was activated, and yet, expression of IRF-3 and IFN-beta were restrained.</p> <p>Conclusions</p> <p>The study demonstrated that activated NRAS played an important part for delNS1 virus replication in MDCK cells. Activated NRAS might be down-regulating the expression of antiviral cellular factors in delNS1 virus infected cells.</p
DeepSketchHair: Deep Sketch-based 3D Hair Modeling
We present sketchhair, a deep learning based tool for interactive modeling of
3D hair from 2D sketches. Given a 3D bust model as reference, our sketching
system takes as input a user-drawn sketch (consisting of hair contour and a few
strokes indicating the hair growing direction within a hair region), and
automatically generates a 3D hair model, which matches the input sketch both
globally and locally. The key enablers of our system are two carefully designed
neural networks, namely, S2ONet, which converts an input sketch to a dense 2D
hair orientation field; and O2VNet, which maps the 2D orientation field to a 3D
vector field. Our system also supports hair editing with additional sketches in
new views. This is enabled by another deep neural network, V2VNet, which
updates the 3D vector field with respect to the new sketches. All the three
networks are trained with synthetic data generated from a 3D hairstyle
database. We demonstrate the effectiveness and expressiveness of our tool using
a variety of hairstyles and also compare our method with prior art
High-Resolution Electric-Field-Driven Jet 3D Printing and Applications
Multi-scale and multi-material 3D printing technique has been regarded as a revolutionary technology and a next-generation manufacturing tool, which can really fulfill the “creating material” and “creating life,” especially subvert the traditional product design and the manufacturing method. However, very few of the established additive manufacturing processes possess the capability to fully implement the fabrication of multi-scale and multi-material. A novel high-resolution 3D printing, named as high-resolution electric-field-driven jet 3D printing, which is based on the induced electric field and EHD cone-jetting behavior, has been developed by our research team. It provides a feasible approach to implement the additive manufacturing of multi-scale and multi-material with high efficiency and low cost. This chapter will introduce this new high resolution 3D printing technique. In particular, many typical applications including transparent conducting electrodes, tissue engineering scaffold, 3D electronics, etc., are presented in detail
lncRNA profiling to elucidate the metabolic mechanism of green tea extract on weight loss in mice
Purpose: To understand the effects of green tea extract on weight loss at the gene level using long non-coding RNA (lncRNA) expression profiles.
Methods: lncRNA expression signatures in rats fed two different diets were determined by analyzing previously published gene expression profiles in Gene Expression Omnibus (GEO). The lncRNAs specific to rats in a particular dietary group were confirmed using an additional autonomous dataset. LncRNA expression profiles were compared to explore the underlying mechanisms of green tea extract on weight loss.
Results: Three lncRNAs (Gm38399, F730035P03Rik, and 5033430I15Rik) that may be the targets of green tea and that may play crucial roles in the lipid-lowering effects of green tea were identified. Using functional annotation databases, two of the targets of two of the lncRNAs were identified as Nav1 and Atxn1.
Conclusion: Based on annotation databases, green tea extract may affect metabolic processes in adipocytes by regulating the lncRNAs GM38399 and 5033430I15Rik that modulate their cis-regulatory target genes Nav1 and Atxn1, respectively. Nav1 and Atxn1 may then regulate trans-regulatory lncRNAs
GC-MS analysis of essential oil from Anethum graveolens L (dill) seeds extracted by supercritical carbon dioxide
Purpose: To conduct gas chromatography-mass spectrometric (GC-MS) analysis of the chemical compositions of dill seed essential oil (DSEO) obtained by supercritical CO2.
Methods: The impact on extraction yield were examined by single factor test, the particle size of dill seed, extraction temperature, time, pressure, as well as CO2 flux. The best extraction conditions were obtained by an orthogonal test. The chemical configurations of essential oil were examined by GC-MS analysis.
Results: The optimal extraction conditions included an extraction time of 120 min, particle size of 60 mesh, CO2 flow of 25 L/h, temperature of 40oC, and pressure of 20 MPa. Under these conditions, the yield of essential oil was 6.7 %. Out of 38 recognized compounds, the main ones were D-carvone (40.36 %), D-limonene (19.31 %), apiol (17.50 %), α-pinene (6.43 %), 9-octadecenoic acid (9.00 %) as well as 9,12-octadecadienoic acid (2.44 %).
Conclusion: A total of 38 constituents of the essential oil obtained by supercritical CO2 were identified. The findings may provide a theoretical basis for comprehensive utilization of dill seed essential oil (DSEO) from China
Development of a Vacuum Ultra-Violet Laser-Based Angle-Resolved Photoemission System with a Super-High Energy Resolution Better Than 1 meV
The design and performance of the first vacuum ultra-violet (VUV) laser-based
angle-resolved photoemission (ARPES) system are described. The VUV laser with a
photon energy of 6.994 eV and bandwidth of 0.26 meV is achieved from the second
harmonic generation using a novel non-linear optical crystal KBe2BO3F2 (KBBF).
The new VUV laser-based ARPES system exhibits superior performance, including
super-high energy resolution better than 1 meV, high momentum resolution,
super-high photon flux and much enhanced bulk sensitivity, which are
demonstrated from measurements on a typical Bi2Sr2CaCu2O8 high temperature
superconductor. Issues and further development related to the VUV laser-based
photoemission technique are discussed.Comment: 29 pages, 10 figures, submitted to Review of Scientific Instrument
- …