22 research outputs found

    The role of the P2Y₂ nucleotide receptor in inflammation: the mechanisms of P2Y₂ receptor-mediated activation of G proteins

    Get PDF
    The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file.Title from title screen of research.pdf file (viewed on March 10, 2009)Includes bibliographical references.Thesis (Ph.D.)--University of Missouri-Columbia, 2007.The extracellular ATP/UTP receptor, i.e., the P2Y₂ receptor (P2Y₂R), mediates pro-inflammatory responses in the vasculature, including the endothelium-dependent infiltration of monocytes and their transmigration into sites of infection, injury, or stress. This dissertation concerns the mechanisms whereby the P2Y₂R mediates chemotaxis as well as the modulation of endothelial intercellular junctions. Since G proteins, such as heterotrimeric G₁₂ and Gi/o and the monomeric Rho family of GTPases, are responsible for regulating cellular actin dynamics and cytoskeletal changes that are central to chemotaxis, endothelial permeability and leukocyte transendothelial migration, this dissertation focuses on the mechanisms underlying the P2Y₂R-mediated activation of G proteins. The P2Y₂R is a G protein-coupled receptor with an extracellular integrin binding domain (RGD) that enables this receptor to directly interact with [alpha]v [beta]3/[beta]5 integrins. The integrin binding domain is required for P2Y₂R-mediated activation of G₁₂, G₀ and G₁₂, G₀₋mediated events, including RhoA and Rac activation, stress fiber formation and chemotaxis towards UTP. In human coronary artery endothelial cells (HCAEC), UTP causes a rapid and transient association of the P2Y₂R and the vascular endothelial growth factor receptor-2 (VEGFR-2) with VE-cadherin, a transmembrane component of endothelial adherens junctions. Inhibition of VEGFR-2 kinase activity, or siRNA-mediated down-regulation of VE-cadherin, inhibits Rac activation induced by UTP. Taken together, these data suggest that the P2Y₂R requires direct interactions with [alpha]v integrin, growth factor receptors and VE-cadherin to activate G proteins involved in chemotaxis and leukocyte transendothelial migration

    P2X7 nucleotide receptors mediate caspase-8/9/3-dependent apoptosis in rat primary cortical neurons

    Get PDF
    Apoptosis is a major cause of cell death in the nervous system. It plays a role in embryonic and early postnatal brain development and contributes to the pathology of neurodegenerative diseases. Here, we report that activation of the P2X7 nucleotide receptor (P2X7R) in rat primary cortical neurons (rPCNs) causes biochemical (i.e., caspase activation) and morphological (i.e., nuclear condensation and DNA fragmentation) changes characteristic of apoptotic cell death. Caspase-3 activation and DNA fragmentation in rPCNs induced by the P2X7R agonist BzATP were inhibited by the P2X7R antagonist oxidized ATP (oATP) or by pre-treatment of cells with P2X7R antisense oligonucleotide indicating a direct involvement of the P2X7R in nucleotide-induced neuronal cell death. Moreover, Z-DEVD-FMK, a specific and irreversible cell permeable inhibitor of caspase-3, prevented BzATP-induced apoptosis in rPCNs. In addition, a specific caspase-8 inhibitor, Ac-IETD-CHO, significantly attenuated BzATP-induced caspase-9 and caspase-3 activation, suggesting that P2X7R-mediated apoptosis in rPCNs occurs primarily through an intrinsic caspase-8/9/3 activation pathway. BzATP also induced the activation of C-jun N-terminal kinase 1 (JNK1) and extracellular signal-regulated kinases (ERK1/2) in rPCNs, and pharmacological inhibition of either JNK1 or ERK1/2 significantly reduced caspase activation by BzATP. Taken together, these data indicate that extracellular nucleotides mediate neuronal apoptosis through activation of P2X7Rs and their downstream signaling pathways involving JNK1, ERK and caspases 8/9/3

    Optogenetics-based localization of talin to the plasma membrane promotes activation of β3 integrins

    No full text
    International audienceInteraction of talin with the cytoplasmic tails of integrin β triggers integrin activation, leading to an increase of integrin affinity/avidity for extracellular ligands. In talin KO mice, loss of talin interaction with platelet integrin αIIbβ3 causes a severe hemostatic defect, and loss of talin interaction with endothelial cell integrin αVβ3 affects angiogenesis. In normal cells, talin is autoinhibited and localized in the cytoplasm. Here, we used an optogenetic platform to assess whether recruitment of full-length talin to the plasma membrane was sufficient to induce integrin activation. A dimerization module (Arabidopsis cryptochrome 2 fused to the N terminus of talin; N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]) responsive to 450 nm (blue) light was inserted into Chinese hamster ovary cells and endothelial cells also expressing αIIbβ3 or αVβ3, respectively. Thus, exposure of the cells to blue light caused a rapid and reversible recruitment of Arabidopsis cryptochrome 2-talin to the N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]-decorated plasma membrane. This resulted in β3 integrin activation in both cell types, as well as increasing migration of the endothelial cells. However, membrane recruitment of talin was not sufficient for integrin activation, as membrane-associated Ras-related protein 1 (Rap1)-GTP was also required. Moreover, talin mutations that interfered with its direct binding to Rap1 abrogated β3 integrin activation. Altogether, these results define a role for the plasma membrane recruitment of talin in β3 integrin activation, and they suggest a nuanced sequence of events thereafter involving Rap1-GTP

    TBK1 at the Crossroads of Inflammation and Energy Homeostasis in Adipose Tissue

    No full text
    The noncanonical IKK family member TANK-binding kinase 1 (TBK1) is activated by pro-inflammatory cytokines, but its role in controlling metabolism remains unclear. Here, we report that the kinase uniquely controls energy metabolism. Tbk1 expression is increased in adipocytes of HFD-fed mice. Adipocyte-specific TBK1 knockout (ATKO) attenuates HFD-induced obesity by increasing energy expenditure; further studies show that TBK1 directly inhibits AMPK to repress respiration and increase energy storage. Conversely, activation of AMPK under catabolic conditions can increase TBK1 activity through phosphorylation, mediated by AMPK's downstream target ULK1. Surprisingly, ATKO also exaggerates adipose tissue inflammation and insulin resistance. TBK1 suppresses inflammation by phosphorylating and inducing the degradation of the IKK kinase NIK, thus attenuating NF-κB activity. Moreover, TBK1 mediates the negative impact of AMPK activity on NF-κB activation. These data implicate a unique role for TBK1 in mediating bidirectional crosstalk between energy sensing and inflammatory signaling pathways in both over- and undernutrition

    The TBK1/IKKε inhibitor amlexanox improves dyslipidemia and prevents atherosclerosis.

    No full text
    Cardiovascular diseases, especially atherosclerosis and its complications, are a leading cause of death. Inhibition of the noncanonical IκB kinases TANK-binding kinase 1 and IKKε with amlexanox restores insulin sensitivity and glucose homeostasis in diabetic mice and human patients. Here we report that amlexanox improves diet-induced hypertriglyceridemia and hypercholesterolemia in Western diet-fed (WD-fed) Ldlr-/- mice and protects against atherogenesis. Amlexanox ameliorated dyslipidemia, inflammation, and vascular dysfunction through synergistic actions that involve upregulation of bile acid synthesis to increase cholesterol excretion. Transcriptomic profiling demonstrated an elevated expression of key bile acid synthesis genes. Furthermore, we found that amlexanox attenuated monocytosis, eosinophilia, and vascular dysfunction during WD-induced atherosclerosis. These findings demonstrate the potential of amlexanox as a therapy for hypercholesterolemia and atherosclerosis

    The Primacy of β1 Integrin Activation in the Metastatic Cascade

    Get PDF
    <div><p>After neoplastic cells leave the primary tumor and circulate, they may extravasate from the vasculature and colonize tissues to form metastases. β1 integrins play diverse roles in tumorigenesis and tumor progression, including extravasation. In blood cells, activation of β1 integrins can be regulated by “inside-out” signals leading to extravasation from the circulation into tissues. However, a role for inside-out β1 activation in tumor cell metastasis is uncertain. Here we show that β1 integrin activation promotes tumor metastasis and that activated β1 integrin may serve as a biomarker of metastatic human melanoma. To determine whether β1 integrin activation can influence tumor cell metastasis, the β1 integrin subunit in melanoma and breast cancer cell lines was stably knocked down with shRNA and replaced with wild-type or constitutively-active β1. When tumor cells expressing constitutively-active β1 integrins were injected intravenously into chick embryos or mice, they demonstrated increased colonization of the liver when compared to cells expressing wild-type β1 integrins. Rescue expression with mutant β1 integrins revealed that tumor cell extravasation and hepatic colonization required extracellular ligand binding to β1 as well as β1 interaction with talin, an intracellular mediator of integrin activation by the Rap1 GTPase. Furthermore, shRNA-mediated knock down of talin reduced hepatic colonization by tumor cells expressing wild-type β1, but not constitutively-active β1. Overexpression in tumor cells of the tumor suppressor, Rap1GAP, inhibited Rap1 and β1 integrin activation as well as hepatic colonization. Using an antibody that detects activated β1 integrin, we found higher levels of activated β1 integrins in human metastatic melanomas compared to primary melanomas, suggesting that activated β1 integrin may serve as a biomarker of invasive tumor cells. Altogether, these studies establish that inside-out activation of β1 integrins promotes tumor cell extravasation and colonization, suggesting diagnostic and therapeutic approaches for targeting of β1 integrin signaling in neoplasia.</p> </div

    Talin-mediated β1 integrin activation is required for hepatic colonization by tumor cells.

    No full text
    <p>Hepatic colonization in the chick embryo experimental metastasis model. (A and B) Box plots showing the effect of talin knockdown in MDA-MB435 cells. Lentivirus encoding a control shRNA or one of three talin shRNAs were transduced into (A) MDA-MB435 β1-WT cells or (B) β1-L358A cells. Box plots depict numbers of human tumor cells quantified in the liver five days after intravenous injection into chick embryos. (C) Effect of wild-type or W359A talin head domain on hepatic colonization in talin knock down cells. (D) Talin head domain cannot rescue the blocking effect of β1 integrin knock down on hepatic colonization (control: n = 14, β1shRNA: n = 15, β1shRNA + talin head: n = 19). (E) Talin knock down cannot rescue the blocking effect of ligand binding-defective β1-D130A on hepatic colonization (β1-WT: n = 27, β1-D130A: n = 23, β1-D130A + talin head: n = 19).</p
    corecore