6 research outputs found

    Chemical synthesis and enzymatic, stereoselective hydrolysis of a functionalized dihydropyrimidine for the synthesis of β-amino acids

    Get PDF
    A novel substrate, 6-(4-nitrophenyl)dihydropyrimidine-2,4(1H,3H)-dione (pNO2PheDU), was chemically synthesized and analytically verified for the potential biocatalytic synthesis of enantiopure β-amino acids. The hydantoinase (EC 3.5.2.2) from Arthrobacter crystallopoietes DSM20117 was chosen to prove the enzymatic hydrolysis of this substrate, since previous investigations showed activities of this enzyme toward 6-monosubstituted dihydrouracils. Whole cell biotransformations with recombinant Escherichia coli expressing the hydantoinase showed degradation of pNO2PheDU. Additionally, the corresponding N-carbamoyl-β-amino acid (NCarbpNO2 βPhe) was chemically synthesized, an HPLC-method with chiral stationary phases for detection of this product was established and thus (S)-enantioselectivity toward pNO2PheDU has been shown. Consequently this novel substrate is a potential precursor for the enantiopure β-amino acid para-nitro-β-phenylalanine (pNO2 βPhe)

    The chemistry of mycotoxins [Progress in the Chemistry of Organic Natural Products, Volume 97]

    No full text
    Mycotoxins – from the Greek μύκης (mykes, mukos) “fungus” and the Latin (toxicum) “poison” – are a large and growing family of secondary metabolites and hence natural products produced by fungi, in particular by molds (1). It is estimated that well over 1,000 mycotoxins have been isolated and characterized so far, but this number will increase over the next few decades due the availability of more specialized analytical tools and the increasing number of fungi being isolated. However, the most important classes of fungi responsible for these compounds are Alternaria, Aspergillus (multiple forms), Penicillium, and Stachybotrys. The biological activity of mycotoxins ranges from weak and/or sometimes positive effects such as antibacterial activity (e.g. penicillin derivatives derived from Penicillium strains) to strong mutagenic (e.g. aflatoxins, patulin), carcinogenic (e.g. aflatoxins), teratogenic, neurotoxic (e.g. ochratoxins), nephrotoxic (e.g. fumonisins, citrinin), hepatotoxic, and immunotoxic (e.g. ochratoxins, diketopiperazines) activities (1, 2), which are discussed in detail in this volume
    corecore