3 research outputs found

    Nanoscale Understanding of Thermal Aggregation of Whey Protein Pretreated by Transglutaminase

    No full text
    Nanoscale structures of whey protein isolate (WPI) pretreated by microbial transglutaminase (mTGase) and subsequent heating were studied in this work and were correlated to zeta-potential, surface hydrophobicity, thermal denaturation properties, and macroscopic turbidity and viscosity. Dispersions of 5% w/v WPI were pretreated by individual or sequential steps of preheating at 80 °C for 15 min and mTGase, used at 2.0–10.2 U/g WPI for 1–15 h, before adjustment of the pH to 7.0 and to 0–100 mM NaCl for heating at 80 °C for 15 and 90 min. The zeta potential and surface hydrophobicity of WPI increased after all pretreatment steps. Preheating increased cross-linking reactivity of WPI by mTGase, corresponding to significantly increased denaturation temperature. Particle size analysis and atomic force microscopy revealed that structures of sequentially pretreated WPI remained stable after heating at 100 mM NaCl, corresponding to transparent dispersions. Conversely, WPI pretreated by one step aggregated at only 100 mM NaCl and resulted in turbid dispersions. Besides reporting a practical approach to produce transparent beverages, nanoscale phenomena in the present study are important for understanding whey protein structures in relevant applications

    A Novel Approach of Periodate Oxidation Coupled with HPLC-FLD for the Quantitative Determination of 3‑Chloro-1,2-propanediol in Water and Vegetable Oil

    No full text
    A novel approach of periodate oxidation coupled with high-performance liquid chromatography (HPLC)–fluorescence detection (FLD) for the quantitative determination of 3-chloro-1,2-propanediol (3-MCPD) has been established. The essence of this approach lies in the production of chloroacetaldehyde by the oxidization cleavage of 3-MCPD with sodium periodate and the HPLC analysis of chloroacetaldehyde monitored by an FLD detector after fluorescence derivatization with adenine. The experimental parameters relating to the efficiency of the derivative reaction such as concentration of adenine, chloroacetaldehyde reaction temperature, and time were studied. Under the optimized conditions, the proposed method can provide high sensitivity, good linearity (<i>r</i><sup>2</sup> = 0.999), and repeatability (percent relative standard deviations between 2.57% and 3.44%), the limits of detection and quantification were 0.36 and 1.20 ng/mL, respectively, and the recoveries obtained for water samples were in the range 93.39–97.39%. This method has been successfully applied to the analysis of real water samples. Also this method has been successfully used for the analysis of vegetable oil samples after pretreatment with liquid–liquid extraction; the recoveries obtained by a spiking experiment with soybean oil ranged from 96.27% to 102.42%. In comparison with gas chromatography or gas chromatography–mass spectrometry, the proposed method can provide the advantages of simple instrumental requirement, easy operation, low cost, and high efficiency, thus making this approach another good choice for the sensitive determination of 3-MCPD

    Creating “Living” Polymer Surfaces to Pattern Biomolecules and Cells on Common Plastics

    No full text
    Creating patterns of biomolecules and cells has been applied widely in many fields associated with the life sciences, including diagnostics. In these applications it has become increasingly apparent that the spatiotemporal arrangement of biological molecules in vitro is important for the investigation of the cellular functions found in vivo. However, the cell patterning techniques often used are limited to creating 2D functional surfaces on glass and silicon. In addition, in general, these procedures are not easy to implement in conventional biological laboratories. Here, we show the formation of a living poly­(ethylene glycol) (PEG) layer that can be patterned with visible light on plastic surfaces. This new and simple method can be expanded to pattern <i>multiple</i> types of biomolecule on either a previously formed PEG layer or a plastic substrate. Using common plastic wares (i.e., polyethylene films and polystyrene cell culture Petri-dishes), we demonstrate that these PEG-modified surfaces have a high resistance to protein adsorption and cell adhesion, while at the same time, being capable of undergoing further molecular grafting with bioactive motifs. With a photomask and a fluid delivery system, we illustrate a flexible way to immobilize biological functions with a high degree of 2D and 3D spatial control. We anticipate that our method can be easily implemented in a typical life science laboratory (without the need for specialized lithography equipment) offering the prospect of imparting desirable properties to plastic products, for example, the creation of functional microenvironments in biological studies or reducing biological adhesion to surfaces
    corecore