147 research outputs found

    Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks

    Full text link
    Facial appearance matters in social networks. Individuals frequently make trait judgments from facial clues. Although these face-based impressions lack the evidence to determine validity, they are of vital importance, because they may relate to human network-based social behavior, such as seeking certain individuals for help, advice, dating, and cooperation, and thus they may relate to centrality in social networks. However, little to no work has investigated the apparent facial traits that influence network centrality, despite the large amount of research on attributions of the central position including personality and behavior. In this paper, we examine whether perceived traits based on facial appearance affect network centrality by exploring the initial stage of social network formation in a first-year college residential area. We took face photos of participants who are freshmen living in the same residential area, and we asked them to nominate community members linking to different networks. We then collected facial perception data by requiring other participants to rate facial images for three main attributions: dominance, trustworthiness, and attractiveness. Meanwhile, we proposed a framework to discover how facial appearance affects social networks. Our results revealed that perceived facial traits were correlated with the network centrality and that they were indicative to predict the centrality of people in different networks. Our findings provide psychological evidence regarding the interaction between faces and network centrality. Our findings also offer insights in to a combination of psychological and social network techniques, and they highlight the function of facial bias in cuing and signaling social traits. To the best of our knowledge, we are the first to explore the influence of facial perception on centrality in social networks.Comment: 11 pages, 8 figure

    SynBody: Synthetic Dataset with Layered Human Models for 3D Human Perception and Modeling

    Full text link
    Synthetic data has emerged as a promising source for 3D human research as it offers low-cost access to large-scale human datasets. To advance the diversity and annotation quality of human models, we introduce a new synthetic dataset, SynBody, with three appealing features: 1) a clothed parametric human model that can generate a diverse range of subjects; 2) the layered human representation that naturally offers high-quality 3D annotations to support multiple tasks; 3) a scalable system for producing realistic data to facilitate real-world tasks. The dataset comprises 1.2M images with corresponding accurate 3D annotations, covering 10,000 human body models, 1,187 actions, and various viewpoints. The dataset includes two subsets for human pose and shape estimation as well as human neural rendering. Extensive experiments on SynBody indicate that it substantially enhances both SMPL and SMPL-X estimation. Furthermore, the incorporation of layered annotations offers a valuable training resource for investigating the Human Neural Radiance Fields (NeRF).Comment: Accepted by ICCV 2023. Project webpage: https://synbody.github.io

    A 13-Gene Metabolic Prognostic Signature Is Associated With Clinical and Immune Features in Stomach Adenocarcinoma

    Get PDF
    Patients with advanced stomach adenocarcinoma (STAD) commonly show high mortality and poor prognosis. Increasing evidence has suggested that basic metabolic changes may promote the growth and aggressiveness of STAD; therefore, identification of metabolic prognostic signatures in STAD would be meaningful. An integrative analysis was performed with 407 samples from The Cancer Genome Atlas (TCGA) and 433 samples from Gene Expression Omnibus (GEO) to develop a metabolic prognostic signature associated with clinical and immune features in STAD using Cox regression analysis and least absolute shrinkage and selection operator (LASSO). The different proportions of immune cells and differentially expressed immune-related genes (DEIRGs) between high- and low-risk score groups based on the metabolic prognostic signature were evaluated to describe the association of cancer metabolism and immune response in STAD. A total of 883 metabolism-related genes in both TCGA and GEO databases were analyzed to obtain 184 differentially expressed metabolism-related genes (DEMRGs) between tumor and normal tissues. A 13-gene metabolic signature (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) was constructed for prognostic prediction of STAD. Sixteen survival-related DEMRGs were significantly related to the overall survival of STAD and the immune landscape in the tumor microenvironment. Univariate and multiple Cox regression analyses and the nomogram proved that a metabolism-based prognostic risk score (MPRS) could be an independent risk factor. More importantly, the results were mutually verified using TCGA and GEO data. This study provided a metabolism-related gene signature for prognostic prediction of STAD and explored the association between metabolism and the immune microenvironment for future research, thereby furthering the understanding of the crosstalk between different molecular mechanisms in human STAD. Some prognosis-related metabolic pathways have been revealed, and the survival of STAD patients could be predicted by a risk model based on these pathways, which could serve as prognostic markers in clinical practice

    A prospective phase II study of L-asparaginase- CHOP plus radiation in newly diagnosed extranodal NK/T-cell lymphoma, nasal type

    Full text link
    Purpose: To explore the efficacy and safety of L-asparaginase in newly-diagnosed extranodal nature killer (NK)/T -cell lymphoma (ENKTL), we conducted a prospective phase II study of L-asparaginase, cyclophosphamide, vincristine, doxorubicin and dexamethasone (CHOP-L) regimen in combination with radiotherapy. Patients and methods: Patients with newly diagnosed ENKTL and an ECOG performance status of 0 to 2 were eligible for enrollment. Treatment included 6-8 cycles of CHOP-L (cyclophosphamide, 750 mg/m(2) day 1; vincristine, 1.4 mg/m(2) day 1 (maximal dose 2 mg), doxorubicin 50 mg/m(2) day 1; dexamethasone 10 mg days 1-8; L-asparaginase 6000 u/m(2) days 2-8). Radiotherapy was scheduled after 4-6 cycles of CHOP-L regimen, depending on stage and primary anatomic site. The primary endpoint was complete response (CR) rate. Results: A total of 38 eligible patients were enrolled. The median age was 40.5 years (range, 15 to 71 years). Their clinical characteristics were male to female ratio, 24: 14; Ann Arbor stage I, 20; II, 11; III, 3; IV, 4. CR and overall response rates were 81.6% (95% CI, 69.3% to 93.9%) and 84.2%, respectively. With a median follow-up of 25 months, the 2-year overall survival, progression-free survival and disease-free survival rates were 80.1% (95% CI, 73.3% to 86.9%), 81% (95% CI, 74.5% to 87.5%) and 93.6% (95% CI, 89.3% to 97.9%), respectively. The major adverse events were myelosuppression, liver dysfunction, and digestive tract toxicities. Grade 3 to 4 leukopenia and neutropenia were 76.3% and 84.2%, respectively. No treatment-related death was observed. Conclusion: CHOP-L chemotherapy in combination with radiotherapy is a safe and highly effective treatment for newly diagnosed ENKTL.OncologyHematologySCI(E)9ARTICLEnull

    Identification of Human Fibroblast Cell Lines as a Feeder Layer for Human Corneal Epithelial Regeneration

    Get PDF
    There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5–14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1×104 in a 35-mm dish (9.6 cm2) grew to confluence (about 1.87–2.41×106 cells) in 12–14 days, representing 187–241 fold expansion with over 7–8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    High-Sensitivity PtSe2 Surface Plasmon Resonance Biosensor Based on Metal-Si-Metal Waveguide Structure

    No full text
    PtSe2 as a novel TMDCs material is used to modify the traditional SPR biosensors to improve the performance. On this basis, this research proposes a metal-Si-metal waveguide structure to further improve the performance of the biosensor. In this study, we not only studied the effects of waveguide structures containing different metals on the performance of biosensor, but also discussed the performance change of the biosensor with the change of PtSe2 thickness. After the final optimization, a BK7-Au-Si-Au-PtSe2 (2 nm) biosensor structure achieved the highest sensitivity of 193.8°/RIU. This work provides a new development idea for the study of SPR biosensors with waveguide structures in the future

    Appreciation of electronic structures in some electron-rich octahedrally-based transition metal chalcogenide clusters

    No full text
    Polynuclear nickel-chalcogenide cluster complexes play an important function at the active centers of many enzymes. Due to their importance in biological processes, these cluster compounds have attracted considerable interest, both experimentally and theoretically. Over the past decade, numerous synthetic nickel(cobalt) chalcogenide clusters have been made. Some selected examples are illustrated in 1-5, where E=S or Se; M=Co for 1 and 2; and M=Ni for 3-5). These clusters are all electron-rich, and their closed shell electronic structure requirements are not satisfactorily explained within the existing electron count rules. In this work, orbital interaction arguments have been developed to appreciate their electronic structures with the aid of extended Hückel molecular orbital calculations. Our approach is to first consider the local metal-ligand interaction
    • …
    corecore