727 research outputs found

    Unveiling the diversity, composition, and dynamics of phyllosphere microbial communities in Alhagi sparsifolia across desert basins and seasons in Xinjiang, China

    Get PDF
    Phyllosphere microbes residing on plant leaf surfaces for maintaining plant health have gained increasing recognition. However, in desert ecosystems, knowledge about the variety, composition, and coexistence patterns of microbial communities in the phyllosphere remains limited. This study, conducted across three basins (Turpan-TLF, Tarim-CL, and Dzungaria-MSW) and three seasons (spring, summer, and autumn) in Xinjiang, China, aimed to explore the diversity and composition of microbial communities in the phyllosphere, encompassing both bacteria and fungi in Alhagi sparsifolia. We also investigated the co-occurrence patterns, influencing factors, and underlying mechanisms driving these dynamics. Results indicate that phyllosphere bacteria exhibited lower diversity indices (ACE, Shannon, Simpson, Fisher phylogenetic diversity, and Richness) in spring compared to summer and autumn, while the Goods Coverage Index (GCI) was higher in spring. Conversely, diversity indices and GCI of phyllosphere fungi showed an opposite trend. Interestingly, the lowest level of multi-functionality and niche width in phyllosphere bacteria occurred in spring, while the highest level was observed in phyllosphere fungi. Furthermore, the study revealed that no significant differences in multi-functionality were found among the regions (CL, MSW, and TLF). Network analysis highlighted that during spring, phyllosphere bacteria exhibited the lowest number of nodes, edges, and average degree, while phyllosphere fungi had the highest. Surprisingly, the multi-functionality of both phyllosphere bacteria and fungi showed no significant correlation with climatic and environmental factors but displayed a significant association with the morphological characteristics and physicochemical properties of leaves. Structural Equation Model indicated that the morphological characteristics of leaves significantly influenced the multi-functionality of phyllosphere bacteria and fungi. However, the indirect and total effects of climate on multi-functionality were greater than the effects of physicochemical properties and morphological characteristics of leaves. These findings offer new insights into leaf phyllosphere microbial community structure, laying a theoretical foundation for vegetation restoration and rational plant resource utilization in desert ecosystems

    HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics in Industrial Metaverse

    Full text link
    Federated Learning (FL), as a rapidly evolving privacy-preserving collaborative machine learning paradigm, is a promising approach to enable edge intelligence in the emerging Industrial Metaverse. Even though many successful use cases have proved the feasibility of FL in theory, in the industrial practice of Metaverse, the problems of non-independent and identically distributed (non-i.i.d.) data, learning forgetting caused by streaming industrial data, and scarce communication bandwidth remain key barriers to realize practical FL. Facing the above three challenges simultaneously, this paper presents a high-performance and efficient system named HFEDMS for incorporating practical FL into Industrial Metaverse. HFEDMS reduces data heterogeneity through dynamic grouping and training mode conversion (Dynamic Sequential-to-Parallel Training, STP). Then, it compensates for the forgotten knowledge by fusing compressed historical data semantics and calibrates classifier parameters (Semantic Compression and Compensation, SCC). Finally, the network parameters of the feature extractor and classifier are synchronized in different frequencies (Layer-wiseAlternative Synchronization Protocol, LASP) to reduce communication costs. These techniques make FL more adaptable to the heterogeneous streaming data continuously generated by industrial equipment, and are also more efficient in communication than traditional methods (e.g., Federated Averaging). Extensive experiments have been conducted on the streamed non-i.i.d. FEMNIST dataset using 368 simulated devices. Numerical results show that HFEDMS improves the classification accuracy by at least 6.4% compared with 8 benchmarks and saves both the overall runtime and transfer bytes by up to 98%, proving its superiority in precision and efficiency.Comment: This paper is submitted to IEEE Transaction on Cloud Computin

    Film mulching counteracts the adverse effects of mild moisture deficiency, and improves the quality and yield of Cyperus esculentus. L grass and tuber in the oasis area of Tarim Basin

    Get PDF
    IntroductionPlastic film mulching (PFM) and deficit irrigation (DI) are vital water-saving approaches in arid agriculture. Cyperus esculentus is a significant crop in dry zones. However, scant data exists on the impacts of these water-saving methods on C. esculentus yield and quality.MethodUsing randomized block experiment design. Three irrigation strategies were tested: CK (standard irrigation), RW20 (20% water reduction), and RW40 (40% water reduction). Mulchin treatments included film mulching (FM) and no film mulching (NFM).ResultsResults revealed substantial effects of film mulching and drip irrigation on soil nutrients and physical properties, with minor influence on grass, root, and tuber stoichiometry. PF treatment, DI treatments, and their interaction significantly affected C. esculentus forage and tuber yields. Initially, grass and tuber yields increased and then decreased with reduced irrigation. The highest yields were under RW20 (3716.31 and 4758.19 kg/ha). FM increased grass and tuber yield by 17.99% and 8.46%, respectively, over NFM. The water reduction augmented the biomass distribuiton of the leaf and root, while reducing the tuber biomass in NFM. FM significantely impacted grass ether extract content, while reduced water influenced grass and tuber crude protein and tuber ether extract content. Mild water stress increased ether extract, crude protein, and soluble matter in grass and tubers, while excessive RW decreased them.ConclusionIntegrating soil traits, nutrients, yield, and quality, findings indicate C. esculentus yield and quality primarily hinge on soil water content, pond hydrogenase, and electrical conductivity. Based on this results, the recommended strategy is to reduce irrigation by 20% for cultivating C. esculentus in this area

    Coordinated Patterns in the Allocation, Composition, and Variability of Multiple Elements Among Organs of Two Desert Shrubs Under Nitrogen Addition and Drought

    Get PDF
    Nutrient allocation closely correlates plant functional traits and development to ecosystem supply services. Desert shrubs maintain the stability of desert ecosystems, whereas the knowledge of how they coordinate nutrients among organs is still limited when responding to differing nitrogen (N) and water regimes. Here we investigated the allocation, composition, and variability of nine elements within organs of Alhagi sparsifolia and Calligonum caput-medusae seedlings under various N addition (0, 3, 6, and 9 gN m−2 year−1) and water regimes (drought versus well-watered). Results showed that plant species identity, organ type, and nitrogen and water treatments significantly affected the concentrations of nine elements independently and interactively (P < 0.05). N addition significantly improved elemental allocation to roots of drought-stressed A. sparsifolia seedlings, whereas N addition of 9.0 gN m−2 year−1 exerted adverse influence on C. caput-medusae. Photosynthetic organs contained more macronutrients, such as N and potassium (K), whereas trace metals accumulated in roots, such as iron (Fe) and manganese (Mn). Soil elemental concentrations were weakly correlated with those in plants. Macroelements in all organs show less variability (coefficient of variation). Coarse root Fe and stem K contents constituted hub traits in plant element networks (PENs) of A. sparsifolia and C. caput-medusae seedlings, respectively, and may play a key role in plant adaptation in desert environments. The looser PEN of A. sparsifolia implied its stronger adaptability than C. caput-medusae. Desert shrubs can coordinate the allocation of multiple elements within and among organs in response to changes in water and N in the environment.Fil: Zhang, Zhihao. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; China. Chinese Academy of Sciences; República de ChinaFil: Chai, Xutian. Chinese Academy of Sciences; República de China. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; ChinaFil: Tariq, Akash. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; China. Chinese Academy of Sciences; República de ChinaFil: Zeng, Fanjiang. Chinese Academy of Sciences; República de China. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Li, Xiangyi. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; China. Chinese Academy of Sciences; República de ChinaFil: Gao, Yanju. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; China. Chinese Academy of Sciences; República de ChinaFil: Ullah, Abd. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; China. Chinese Academy of Sciences; República de Chin

    Coupling relationship of leaf economic and hydraulic traits of alhagi sparsifolia shap. In a hyper-arid desert ecosystem

    Get PDF
    In this study, Alhagi sparsifolia Shap. was used to test the hypothesis that leaf economic and hydraulic traits are coupled in plants in a hyper-arid region. Five economic traits and six hydraulic traits were examined to explore the relationship. Results showed that the stomatal density (SD) on both surfaces was coupled with maximum stomatal conductance to water vapor (gwmax) and leaf tissue density (TD). SD on adaxial surface (SDaba) was significantly positively related to vein density (VD) but negatively related to leaf thickness (LT) and stomatal length on adaxial surface (SLada). Nitrogen concentration based on mass (Nmass) was significantly negatively correlated with leaf mass per area (LMA), LT, and VD, whereas nitrogen concentration based on area (Narea) was significantly positively related to LMA and TD. Mean annual precipitation (MAP) contributed the most to the changes in LT and stomatal length (SL). Soil salt contributed the most to TD, SD, and gwmax. Soli nutrients influenced the most of LMA and VD. Mean annual temperature contributed the most to Nmass and Narea. In conclusion, the economics of leaves coupled with their hydraulic traits provides an economical and efficient strategy to adapt to the harsh environment in hyper-arid regions.Fil: Yin, Hui. University Of Chinese Academy Of Sciences; China. Xinjiang University; China. Xinjiang Institute Of Ecology And Geography Chinese Academy Of Sciences; China. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; ChinaFil: Tariq, Akash. University Of Chinese Academy Of Sciences; China. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; China. Xinjiang Institute Of Ecology And Geography Chinese Academy Of Sciences; ChinaFil: Zhang, Bo. University Of Chinese Academy Of Sciences; China. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; China. Xinjiang Institute Of Ecology And Geography Chinese Academy Of Sciences; ChinaFil: Lv, Guanghui. Xinjiang University; ChinaFil: Zeng, Fanjiang. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; China. Xinjiang Institute Of Ecology And Geography Chinese Academy Of Sciences; China. University Of Chinese Academy Of Sciences; ChinaFil: Graciano, Corina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Fisiología Vegetal. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Fisiología Vegetal; ArgentinaFil: Santos, Mauro. Universidade Federal de Pernambuco; BrasilFil: Zhang, Zhihao. University Of Chinese Academy Of Sciences; China. Xinjiang Institute Of Ecology And Geography Chinese Academy Of Sciences; China. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; ChinaFil: Wang, Peng. Cele National Station Of Observation And Research For Desert-grassland Ecosystems; China. Xinjiang Institute Of Ecology And Geography Chinese Academy Of Sciences; ChinaFil: Mu, Shuyong. Xinjiang Institute Of Ecology And Geography Chinese Academy Of Sciences; Chin

    Alhagi sparsifolia acclimatizes to saline stress by regulating its osmotic, antioxidant, and nitrogen assimilation potential

    Get PDF
    Alhagi sparsifolia (Camelthorn) is a leguminous shrub species that dominates the Taklimakan desert's salty, hyperarid, and infertile landscapes in northwest China. Although this plant can colonize and spread in very saline soils, how it adapts to saline stress in the seedling stage remains unclear so a pot-based experiment was carried out to evaluate the effects of four different saline stress levels (0, 50, 150, and 300 mM) on the morphological and physio-biochemical responses in A. sparsifolia seedlings. Our results revealed that N-fixing A. sparsifolia has a variety of physio-biochemical anti-saline stress acclimations, including osmotic adjustments, enzymatic mechanisms, and the allocation of metabolic resources. Shoot-root growth and chlorophyll pigments significantly decreased under intermediate and high saline stress. Additionally, increasing levels of saline stress significantly increased Na + but decreased K + concentrations in roots and leaves, resulting in a decreased K + /Na + ratio and leaves accumulated more Na + and K + ions than roots, highlighting their ability to increase cellular osmolarity, favouring water fluxes from soil to leaves. Salt-induced higher lipid peroxidation significantly triggered antioxidant enzymes, both for mass-scavenging (catalase) and cytosolic fine-regulation (superoxide dismutase and peroxidase) of HO. Nitrate reductase and glutamine synthetase/glutamate synthase also increased at low and intermediate saline stress levels but decreased under higher stress levels. Soluble proteins and proline rose at all salt levels, whereas soluble sugars increased only at low and medium stress. The results show that when under low-to-intermediate saline stress, seedlings invest more energy in osmotic adjustments but shift their investment towards antioxidant defense mechanisms under high levels of saline stress. Overall, our results suggest that A. sparsifolia seedlings tolerate low, intermediate, and high salt stress by promoting high antioxidant mechanisms, osmolytes accumulations, and the maintenance of mineral N assimilation. However, a gradual decline in growth with increasing salt levels could be attributed to the diversion of energy from growth to maintain salinity homeostasis and anti-stress oxidative mechanisms

    Phosphorous Supplementation Alleviates Drought-Induced Physio-Biochemical Damages in Calligonum mongolicum

    Get PDF
    This work was supported by the National Natural Science Foundation of China (No. 41977050, 32250410301), the Key Program of Joint Funds of the National Natural Science Foundation of China, and the Government of Xinjiang Uygur Autonomous Region of China (Nos. U1903102). This research was further supported by the Ministry of Science and Technology, China (QN2022045005).Calligonum mongolicum is a phreatophyte playing an important role in sand dune fixation, but little is known about its responses to drought and P fertilization. In the present study, we performed a pot experiment to investigate the effects of P fertilization under drought or well-watered conditions on multiple morpho-physio-biochemical attributes of C. mongolicum seedlings. Drought stress leads to a higher production of hydrogen peroxide (HO) and malondialdehyde (MDA), leading to impaired growth and metabolism. However, C. mongolicum exhibited effective drought tolerance strategies, including a higher accumulation of soluble sugars, starch, soluble protein, proline, and significantly higheractivities of peroxidase (POD) and catalase (CAT) enzymes. P fertilization increased the productivity of drought-stressed seedlings by increasing their growth, assimilative shoots relative water content, photosynthetic pigments, osmolytes accumulation, mineral nutrition, N assimilation, and reduced lipid peroxidation. Our findings suggest the presence of soil high P depletion and C. mongolicum high P requirements during the initial growth stage. Thus, P can be utilized as a fertilizer to enhance the growth and productivity of Calligonum vegetation and to reduce the fragility of the hyper-arid desert of Taklamakan in the context of future climate change

    Diverse configurations of columnar liquid crystals in cylindrical nano- and micropores.

    Get PDF
    Using 2D X-ray diffraction and AFM we studied the configuration, in cylindrical confinement, of hexagonal columnar phases that anchor homeotropically, i.e. with the columns normal to the pore wall. A wide range of pore diameters, from 20 nm to 100 μm, were explored by employing anodic alumina membranes and glass capillaries. The compounds used were a small discotic, hexakis(hexyloxy)triphenylene (HAT6), a large discotic hexa-peri-hexabenzocoronene (HBC), and a T-shaped bolaamphiphile, forming a honeycomb-type columnar phase. It was found that in pores up to tens of μm in diameter the columns adopt the "logpile" configuration with parallel columns crossing the pore perpendicular to its axis. Starting with 20 nm pores, with increasing pore diameter up to 5 different configurations are observed, the sequence being the same for all three compounds in spite of their structural diversity. One of the {100} planes of the hexagonal logpile starts from being parallel to the pore axis, then rotates by 90° as the pore size increases, and eventually becomes tilted to the pore axis by (8.5 ± 1)° as the pore widens further. Finally, in glass capillaries of tens of μm and beyond, the columns become axially oriented, parallel to the capillary axis. This latter finding was particularly unexpected as common sense would suggest axial columns to be favoured by planar anchoring, where in fact, it was shown to be hard to achieve. The present findings should help in the design of low-dimensional semiconductor or ionic conductor devices based on oriented columnar phases
    • …
    corecore