196 research outputs found

    Applications of TDLAS based multi-species hydrocarbon measurement using a wide scanning range DFG laser

    Get PDF
    Tunable diode laser absorption spectroscopy (TDLAS) is a widely used hydrocarbon gas sensing method in many fields. However, the short scanning range limits its application where multi-species detection is necessary. In this paper, a laser system based on TDLAS using a difference frequency generation laser was applied for the investigation of the hydrocarbon gases produced in the coal pyrolysis process and engine exhaust. The coal sample was heated up to 623 K and the recorded spectra were analyzed by the comparison with the pure hydrocarbon spectra database. A least-squares fitting was performed to quantitatively determine the concentration of each component of the mixture. Totally nine different hydrocarbons were identified and the R2 values close to 1 indicate that the variance between measured and fitted data was small. The spectra of engine exhaust were recorded and analyzed using the same method. Hydrocarbon from C3–C8 and a small amount of methane and ethene were identified. The concentration variation with time was observed

    (2E,6E)-2,6-Bis(4-ethoxy­benzyl­idene)cyclo­hexa­none

    Get PDF
    The title compound, C24H26O3, was prepared by the condensation reaction of 4-ethoxy­benzaldehyde with cyclo­hexa­none. The mol­ecule has crystallographic mirror symmetry and exhibits a butterfly-shaped geometry, with a dihedral angle of 5.46 (1)° between the two benzene rings. Weak inter­molecular C—H⋯π inter­actions help stabilize the crystal structure

    Functioning and mechanisms of PTMs in renal diseases

    Get PDF
    Post-translational modifications (PTMs) are crucial epigenetic mechanisms that regulate various cellular biological processes. The use of mass spectrometry (MS)-proteomics has led to the discovery of numerous novel types of protein PTMs, such as acetylation, crotonylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, protein propionylation and butyrylation, succinylation, malonylation, lactylation, and histone methylation. In this review, we specifically highlight the molecular mechanisms and roles of various histone and some non-histone PTMs in renal diseases, including diabetic kidney disease. PTMs exhibit diverse effects on renal diseases, which can be either protective or detrimental, depending on the specific type of protein PTMs and their respective targets. Different PTMs activate various signaling pathways in diverse renal pathological conditions, which could provide novel insights for studying epigenetic mechanisms and developing potential therapeutic strategies for renal diseases

    GmMYB181, a Soybean R2R3-MYB Protein, Increases Branch Number in Transgenic Arabidopsis

    Get PDF
    Soybean (Glycine max) is an important economic crop that provides abundant oil and high quality protein for human beings. As the process of reproductive growth directly determines the crop seed yield and quality, we initiated studies to identify genes that regulate soybean floral organ development. One R2R3-MYB transcription factor gene, designated as GmMYB181, was found to be enriched in flowers based on microarray analysis and was further functionally investigated in transgenic Arabidopsis. GmMYB181 protein contains two MYB domains, which localized to the nucleus and displayed transcriptional activation in yeast hybrid system. Real-time quantitative PCR (qRT-PCR) results suggested GmMYB181 exclusively expressed in flower tissue. In Arabidopsis, overexpression of GmMYB181 altered the morphology of floral organs, fruit size and plant architecture, including outward curly sepals, smaller siliques, increased lateral branches and reduced plant height, indicating that GmMYB181 is involved in the development of reproductive organs and plays an important role in controlling plant architecture. Further, microarray analysis revealed that overexpressing GmMYB181 in Arabidopsis affected the expression of 3450 genes in mature flowers, including those involved in floral organ, seed/fruit development, and responded to different hormone signals

    Association between added sugars and kidney stones in U.S. adults: data from National Health and Nutrition Examination Survey 2007–2018

    Get PDF
    PurposeAdded sugar is associated with a variety of adverse health outcomes, but its association with kidney stones is unclear. This study was to determine whether added sugar is associated with kidney stones.Materials and methodsThis nationally representative study used National Health and Nutrition Examination Survey (NHANES) datasets from 2007 to 2018 for analysis. People aged ≥20 years who reported a history of kidney stones and provided dietary recall data on added sugars were included. Weighted proportions, multivariable logistic regression analysis and stratified logistic regression were used to evaluate the associations between added sugars and kidney stones by adjusting potential confounders.ResultsTotally 28,303 adults were included, with weighted mean age [95% confidence interval (CI)] of 48.03 (47.56, 48.51) years, 47.74% (47.09, 48.40%) males and 52.26% (51.60, 52.91%) females. The overall mean (95% CI) energy intake from added sugars was 272.10 (266.59, 277.60) kilocalories. In the fully-adjusted multivariable model, the percentage of energy intake from added sugars was positively correlated with kidney stones. Compared to the first quartile of added sugar energy intake percentage, the population in the fourth quartile had a higher prevalence of kidney stones (OR = 1.39; 95% CI 1.17 to 1.65). Compared with the less than 5% calories from added sugar population, the more than or equal to 25% calories from added sugar had a higher kidney stone prevalence (OR = 1.88; 95% CI 1.52 to 2.32).ConclusionA higher percentage of energy intake from added sugars is significantly associated with a higher prevalence of kidney stones. This study provides cross-sectional evidence for the relationship between added sugars and health outcomes

    A decade of complex fractionated electrograms catheter-based ablation for atrial fibrillation: Literature analysis, meta-analysis and systematic review

    Get PDF
    AbstractBackgroundIt has been a decade since the complex fractionated atrial electrograms (CFAEs) were first established following the publication of Nademanee's standards. However, the status and focus of CFAE research are unclear, as is the efficacy of additional CFAE ablation in atrial fibrillation (AF). This literature review and meta-analysis were designed to determine the status of CFAE research and the efficacy and complications of CFAE ablation alone, pulmonary vein isolation (PVI) alone and PVI plus CFAE ablation in AF.MethodsWith the assistance from reference librarians and investigators trained in systematic review, we conducted a literature search of MEDLINE (via PubMed), Embase, the Cochrane Library, ScienceDirect, Wiley Blackwell and Web of Knowledge, using “complex fractionated atrial electrograms” for MeSH and keyword search.ResultsThe literature on CFAEs increased from 2007, mainly focusing on mapping studies, with mechanism studies increasing significantly from 2012. Fifteen trials with 1525 patients were qualified for our meta-analysis. Success rates were as follows. Overall (P < 0.001): CFAE ablation alone, 23.5–26.2%; PVI, 64.7%; PVI plus CFAE ablation, 67.0%. Single ablation: PVI, 60.4%; PVI plus CFAEs, 68.8% (OR 1.53, 95% CI 1.07–2.20, P = 0.02). Re-ablation: PVI, 69.0%; PVI plus CFAEs, 77.2% (OR 1.54, 95% CI 1.06–2.24, P = 0.02). Paroxysmal AF: PVI, 76.7%; PVI plus CFAEs, 79.1% (OR 1.20, 95% CI 0.79–1.81, P = 0.39). Persistent or permanent AF: PVI, 47.9%; PVI plus CFAEs, 58.7% (OR = 1.59, 95% CI 1.13–2.24, P = 0.008). Complication rates: PVI, 2.6%; PVI plus CFAEs, 3.4% (OR 1.22, 95% CI 0.58–2.57, P = 0.61).ConclusionsIn the literature, CFAE mapping studies preceded mechanism studies. CFAE ablation alone is insufficient for the treatment of AF. Additional CFAE ablation after adequate PVI or PVI plus linear ablation improves the outcome of single ablation and re-ablation without increasing complications, especially in persistent or permanent AF. There are insufficient data to support a similar improvement in paroxysmal AF or inducible AF after PVI for paroxysmal AF

    Single-cell transcriptome sequencing reveals tumor heterogeneity in family neuroblastoma

    Get PDF
    Neuroblastoma(NB) is the most common extracranial solid tumor in childhood, and it is now believed that some patients with NB have an underlying genetic susceptibility, which may be one of the reasons for the multiplicity of NB patients within a family line. Even within the same family, the samples show great variation and can present as ganglioneuroblastoma or even benign ganglioneuroma. The genomics of NB is still unclear and more in-depth studies are needed to reveal its key components. We first performed single-cell RNA sequencing(sc-RNAseq) analysis on clinical specimens of two family neuroblastoma(FNB) and four sporadic NB cases. A complete transcriptional profile of FNB was constructed from 18,394 cells from FNB, and we found that SDHD may be genetically associated with FNB and identified a prognostic related CAF subtype in FNB: Fib-4. Single-cell flux estimation analysis (scFEA) results showed that malignant cells were associated with arginine spermine, oxaloacetate and hypoxanthine, and that malignant cells metabolize lactate at lower levels than T cells. Our study provides new resources and ideas for the development of the genomics of family NB, and the mechanisms of cell-to-cell interactions and communication and the metabolic landscape will provide new therapeutic targets

    Application of quantitative real-time PCR to detect Mink Circovirus in minks, foxes and raccoon dogs in northern China

    Get PDF
    Mink circovirus disease caused by Mink Circovirus (MiCV) is a serious infectious disease of mink that has become prevalent in recent years in China, severely affecting the reproductive performance of mink and causing significant economic losses to farms. To date, there have been few studies on MiCV, its pathogenic mechanism is not clear, and there is no effective vaccine or drug to prevent and control the disease. Therefore, it is necessary to establish a rapid and reliable molecular diagnostic method, which would aid future studies of this novel virus. In our study, we developed a sensitive and specific TaqMan-based quantitative real-time PCR assay targeting the MiCV Cap gene. The assay showed no cross-reaction with other tested animal viruses. The assay is highly sensitive, with a detection limit of as low as 10 plasmid DNA copies and 2.38 × 10−2 pg of viral DNA. The intra and inter--assay coefficients of variation were both low. The positive detection rate of MiCV in clinical samples from minks, foxes, and raccoon dogs were 58.8% (133/226), 50.7% (72/142), and 42.2% (54/128), respectively, giving a total positive detection rate of 52.2% (259/496). Higher contamination levels were observed in samples from the environment in direct or indirect contact with animals, with a total positive detection rate of 75.1% (220/293). These epidemiological results showed that minks, foxes, and raccoon dogs had high infection rates of MiCV. This was also the first study to detect MiCV on the ground and equipment of fur-bearing animal farms. Our assay is highly sensitive and specific for the diagnosis and quantification of MiCV, and should provide a reliable real-time tool for epidemiological and pathogenetic study of MiCV infection
    corecore