17 research outputs found
A General Pattern-Based Design Optimization for Asymmetric Spoke-Type Interior PM Machines
A novel asymmetric spoke-type interior permanent magnet (AS-IPM) machine is proposed in this paper. It utilizes the magnetic-field-shifting (MFS) effect to improve the torque performance, which achieves a high utilization ratio of both permanent magnet (PM) torque and reluctance torque. In addition, a general pattern of rotor topologies is proposed to represent all possible machine structures. Various rotor structures can be obtained by changing the design parameters of the general pattern. A non-dominated sorting genetic algorithm II (NSGA-II) is adopted to automatically search for optimal rotor configurations. With the aid of the optimization program, an asymmetric spoke-type rotor structure with improved performance is obtained. To showcase the advantages of the proposed machine, the electromagnetic performance is compared between a conventional spoke-type interior permanent magnet (S-IPM) machine and a proposed AS-IPM machine. The finite-element simulation results show that the optimal design of the AS-IPM performs a 7.7% higher output torque ripple due to the MFS effect while the total PM volume remains the same. Meanwhile, the torque ripple of the proposed structure is significantly reduced by 82.1%
Thiophene Disubstituted Benzothiadiazole Derivatives: An Effective Planarization Strategy Toward Deep-Red to Near-Infrared (NIR) Organic Light-Emitting Diodes
As one of the three primary colors that are indispensable in full-color displays, the development of red emitters is far behind the blue and green ones. Here, three novel orange-yellow to near-infrared (NIR) emitters based on 5,6-difluorobenzo[c][1,2,5]thiadiazole (BTDF) namely BTDF-TPA, BTDF-TTPA, and BTDF-TtTPA were designed and synthesized. Density functional theory analysis and photophysical characterization reveal that these three materials possess hybridized local and charge-transfer (HLCT) state feature and a feasible reverse intersystem crossing (RISC) from the high-lying triplet state to the singlet state may conduce to an exciton utilization exceeding the limit of 25% of traditional fluorescence materials under electrical excitation. The insertion of thiophene with small steric hindrance as π-bridge between the electron-donating (D) moiety triphenylamine (TPA) and the electron-accepting (A) moiety BTDF not only results in a remarkable 67 nm red-shift of the emission peak but also brings about a large overlap of frontier molecular orbitals to guarantee high radiative transition rate that is of great significance to obtain high photoluminescence quantum yield (PLQY) in the “energy-gap law” dominated long-wavelength emission region. Consequently, an attractive high maximum external quantum efficiency (EQE) of 5.75% was achieved for the doped devices based on these thiophene π-bridged emitters, giving a deep-red emission with small efficiency roll-off. Remarkably, NIR emission could be obtained for the non-doped devices, achieving an excellent maximum EQE of 1.44% and Commission Internationale de l'Éclairage (CIE) coordinates of (0.71, 0.29). These results are among the highest efficiencies in the reported deep-red to NIR fluorescent OLEDs and offer a new π-bridge design strategy in D-π-A and D-π-A-π-D red emitter design
A General Pattern-Based Design Optimization for Asymmetric Spoke-Type Interior PM Machines
A novel asymmetric spoke-type interior permanent magnet (AS-IPM) machine is proposed in this paper. It utilizes the magnetic-field-shifting (MFS) effect to improve the torque performance, which achieves a high utilization ratio of both permanent magnet (PM) torque and reluctance torque. In addition, a general pattern of rotor topologies is proposed to represent all possible machine structures. Various rotor structures can be obtained by changing the design parameters of the general pattern. A non-dominated sorting genetic algorithm II (NSGA-II) is adopted to automatically search for optimal rotor configurations. With the aid of the optimization program, an asymmetric spoke-type rotor structure with improved performance is obtained. To showcase the advantages of the proposed machine, the electromagnetic performance is compared between a conventional spoke-type interior permanent magnet (S-IPM) machine and a proposed AS-IPM machine. The finite-element simulation results show that the optimal design of the AS-IPM performs a 7.7% higher output torque ripple due to the MFS effect while the total PM volume remains the same. Meanwhile, the torque ripple of the proposed structure is significantly reduced by 82.1%
A Non-Permanent Magnet DC-Biased Vernier Reluctance Linear Machine with Non-Uniform Air Gap Structure for Ripple Reduction
Thrust ripple and density greatly impact the performance of the linear machine and other linear actuators, causing positioning control precision, dynamic performance, and efficiency issues. Generalized pole-pair combinations are difficult to satisfy both the thrust and ripple for double salient reluctance linear machines. In this paper, a DC-Biased vernier reluctance linear machine (DCB-VRLM) is proposed to solve the abovementioned issues. The key to the proposed design is to reduce the ripple and enhance the thrust density with non-uniform teeth by utilizing and optimizing the modulated flux in the air gap. To effectively verify the proposed design, the DCB-VRLMs with different winding pole pairs and secondary poles are compared. The 12-slot/10-pole combination is chosen to adopt a non-uniform air gap structure. Moreover, the energy distribution of AC/DC winding is studied and optimized to further enhance the performance of the proposed DCB-VRLM. The results indicate that the DCB-VRLM with the non-uniform air gap has a lower thrust ripple, better overload capability, and higher thrust density, which confirms its superiority in long-stroke linear rail transit and vertical elevator applications
Facile synthesized Cu-SnO2 anode materials with three-dimensional metal cluster conducting architecture for high performance lithium-ion batteries
Metal oxide anode material is one of promising candidates for the next-generation LIBs, due to its high theoretical capacity and low cost. The poor conductivity and huge volume change during charge/discharge, however, restrict the commercialization of metal oxide anode material. In this work, we design a novel Cu-SnO2 composite derived from Cu6Sn5 alloy with three dimensional (3D) metal cluster conducting architecture. The novel Cu structure penetrates in the composite particles inducing high conductivity and space-confined SnO2, which restrict the pulverization of SnO2 during lithiation/ delithiation process. The optimized Cu-SnO2 composite anode delivers an initial discharge capacity of 933.7 mA h/g and retains a capacity of 536.1 mA h/g after 200 cycles, at 25 degrees C and a rate of 100 mA/g. Even at the high rate of 300 mA/g, the anode still exhibits a capacity of more than 29% of that tested at 50 mA/g. Combining with the phase and morphology analysis, the novel Cu-SnO2 composite not only has good electrical conductivity, but also possesses high theoretical capacity (995 mAh/g), which may pave a new way for the design and construction of next-generation metal oxide anode materials with high power and cycling stability. (C) 2018 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved
Facile synthesized Cu-SnO2 anode materials with three-dimensional metal cluster conducting architecture for high performance lithium-ion batteries
Metal oxide anode material is one of promising candidates for the next-generation LIBs, due to its high theoretical capacity and low cost. The poor conductivity and huge volume change during charge/discharge, however, restrict the commercialization of metal oxide anode material. In this work, we design a novel Cu-SnO2 composite derived from Cu6Sn5 alloy with three dimensional (3D) metal cluster conducting architecture. The novel Cu structure penetrates in the composite particles inducing high conductivity and space-confined SnO2, which restrict the pulverization of SnO2 during lithiation/ delithiation process. The optimized Cu-SnO2 composite anode delivers an initial discharge capacity of 933.7 mA h/g and retains a capacity of 536.1 mA h/g after 200 cycles, at 25 degrees C and a rate of 100 mA/g. Even at the high rate of 300 mA/g, the anode still exhibits a capacity of more than 29% of that tested at 50 mA/g. Combining with the phase and morphology analysis, the novel Cu-SnO2 composite not only has good electrical conductivity, but also possesses high theoretical capacity (995 mAh/g), which may pave a new way for the design and construction of next-generation metal oxide anode materials with high power and cycling stability. (C) 2018 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved
Three-dimensional interpenetrating network graphene/copper composites with simultaneously enhanced strength, ductility and conductivity
Three-dimensional (3D) interpenetrating network graphene/copper (G/Cu) composites were fabricated by in-situ growth of G on nanoporous Cu followed by rolling and sintering processes. In-situ growth of G network generate an intimate interface between G and Cu matrix, which is not only essential for high load transfer efficiency but also minimize the interfacial resistance. Moreover, the 3D interpenetrating network structure is propitious to fully exert the additional electronic transport pathway and loadbearing of 3D G, as well as helping to generate and store dislocation without initiating cracks. Consequently, the obtained composite exhibits an elegant combination of enhanced tensile strength (354 MPa), extraordinary ductility (16.5% elongation) and robust conductivity (98% IACS). (C) 2018 Elsevier B.V. All rights reserved
NIPS derived three-dimensional porous copper membrane for high-energy-density lithium-ion batteries
NIPS derived three-dimensional porous copper membrane for high-energy-density lithium-ion batterie