171 research outputs found

    Visibility-Aware Pixelwise View Selection for Multi-View Stereo Matching

    Full text link
    The performance of PatchMatch-based multi-view stereo algorithms depends heavily on the source views selected for computing matching costs. Instead of modeling the visibility of different views, most existing approaches handle occlusions in an ad-hoc manner. To address this issue, we propose a novel visibility-guided pixelwise view selection scheme in this paper. It progressively refines the set of source views to be used for each pixel in the reference view based on visibility information provided by already validated solutions. In addition, the Artificial Multi-Bee Colony (AMBC) algorithm is employed to search for optimal solutions for different pixels in parallel. Inter-colony communication is performed both within the same image and among different images. Fitness rewards are added to validated and propagated solutions, effectively enforcing the smoothness of neighboring pixels and allowing better handling of textureless areas. Experimental results on the DTU dataset show our method achieves state-of-the-art performance among non-learning-based methods and retrieves more details in occluded and low-textured regions.Comment: 8 page

    Building BROOK: A multi-modal and facial video database for Human-Vehicle Interaction research

    Get PDF
    With the growing popularity of Autonomous Vehicles, more opportunities have bloomed in the context of Human-Vehicle Interactions. However, the lack of comprehensive and concrete database support for such specific use case limits relevant studies in the whole design spaces. In this paper, we present our work-in-progress BROOK, a public multi-modal database with facial video records, which could be used to characterise drivers' affective states and driving styles. We first explain how we over-engineer such database in details, and what we have gained through a ten-month study. Then we showcase a Neural Network-based predictor, leveraging BROOK, which supports multi-modal prediction (including physiological data of heart rate and skin conductance and driving status data of speed) through facial videos. Finally we discuss related issues when building such a database and our future directions in the context of BROOK. We believe BROOK is an essential building block for future Human-Vehicle Interaction Research. More details and updates about the project BROOK is online at https: //unnc-idl-ucc.github.io/BROOK/

    An in-depth analysis of system-level techniques for Simultaneous Multi-threaded Processors in Clouds

    Get PDF
    To improve the overall system utilization, Simultaneous Multi-Threading (SMT) has become a norm in clouds. Usually, Hardware threads are viewed and deployed directly as physical cores for attempts to improve resource utilization and system throughput. However, context switches in virtualized systems might incur severe resource waste, which further led to significant performance degradation. Worse, virtualized systems suffer from performance variations since the rescheduled vCPU may affect other hardware threads on the same physical core. In this paper, we perform an in-depth experimental study about how existing system software techniques improves the utilization of SMT Processors in Clouds. Considering the default Linux hypervisor vanilla KVM as the baseline, we evaluated two update-to-date kernel patches IdlePoll and HaltPoll through the combination of 14 real-world workloads. Our results show that mitigating they could significantly mitigate the number of context switches, which further improves the overall system throughput and decreases its latency. Based on our findings, we summarize key lessons from the previous wisdom and then discuss promising directions to be explored in the future

    Building BROOK: A multi-modal and facial video database for Human-Vehicle Interaction research

    Get PDF
    With the growing popularity of Autonomous Vehicles, more opportunities have bloomed in the context of Human-Vehicle Interactions. However, the lack of comprehensive and concrete database support for such specific use case limits relevant studies in the whole design spaces. In this paper, we present our work-in-progress BROOK, a public multi-modal database with facial video records, which could be used to characterise drivers' affective states and driving styles. We first explain how we over-engineer such database in details, and what we have gained through a ten-month study. Then we showcase a Neural Network-based predictor, leveraging BROOK, which supports multi-modal prediction (including physiological data of heart rate and skin conductance and driving status data of speed) through facial videos. Finally we discuss related issues when building such a database and our future directions in the context of BROOK. We believe BROOK is an essential building block for future Human-Vehicle Interaction Research. More details and updates about the project BROOK is online at https: //unnc-idl-ucc.github.io/BROOK/

    The geography of genetic data: Current status and future perspectives

    Get PDF
    The biogeography field benefits more and more from the growth and application of genetic data such as nucleotide sequences and whole genomes. It has been perceived by scientists that genetic data may be imbalanced among different geographical regions and taxonomic groups. However, the lack of empirical evidence prevents the understanding of current data volume and distribution of genetic data. Based on the construction of a dataset including records for 365 millions of nucleotide sequences of Animalia, Plantae, and Fungi kingdoms, 6 millions of COI sequences of insects, 77 thousands of COI sequences of mammals, 220 thousands of rbcl sequences of Magnoliopsida, and 44 thousands of ITS sequences of Dothideomycetes, here we present evidence on geographical and taxonomical imbalance of the genetic data, identify major gaps and inappropriate practices in the production, application and sharing of genetic data. We then discuss our perspectives on how to fill up gaps and improve the quantity and quality of genetic data

    A comparative study of speculative retrieval for multi-modal data trails: towards user-friendly Human-Vehicle interactions

    Get PDF
    In the era of growing developments in Autonomous Vehicles, the importance of Human-Vehicle Interaction has become apparent. However, the requirements of retrieving in-vehicle drivers’ multi- modal data trails, by utilizing embedded sensors, have been consid- ered user unfriendly and impractical. Hence, speculative designs, for in-vehicle multi-modal data retrieval, has been demanded for future personalized and intelligent Human-Vehicle Interaction. In this paper, we explore the feasibility to utilize facial recog- nition techniques to build in-vehicle multi-modal data retrieval. We first perform a comprehensive user study to collect relevant data and extra trails through sensors, cameras and questionnaire. Then, we build the whole pipeline through Convolution Neural Net- works to predict multi-model values of three particular categories of data, which are Heart Rate, Skin Conductance and Vehicle Speed, by solely taking facial expressions as input. We further evaluate and validate its effectiveness within the data set, which suggest the promising future of Speculative Designs for Multi-modal Data Retrieval through this approach

    Face2Multi-modal: in-vehicle multi-modal predictors via facial expressions

    Get PDF
    Towards intelligent Human-Vehicle Interaction systems and innovative Human-Vehicle Interaction designs, in-vehicle drivers' physiological data has been explored as an essential data source. However, equipping multiple biosensors is considered the limited extent of user-friendliness and impractical during the driving procedure. The lack of a proper approach to access physiological data has hindered wider applications of advanced biosignal-driven designs in practice (e.g. monitoring systems and etc.). Hence, the demand for a user-friendly approach to measuring drivers' body statuses has become more intense. In this Work-In-Progress, we present Face2Multi-modal, an In-vehicle multi-modal Data Streams Predictors through facial expressions only. More specifically, we have explored the estimations of Heart Rate, Skin Conductance, and Vehicle Speed of the drivers. We believe Face2Multi-modal provides a user-friendly alternative to acquiring drivers' physiological status and vehicle status, which could serve as the building block for many current or future personalized Human-Vehicle Interaction designs. More details and updates about the project Face2Multi-modal is online at https://github.com/unnc-ucc/Face2Multimodal/
    • …
    corecore