1,795 research outputs found

    Minimal immersions of closed surfaces in hyperbolic three-manifolds

    Full text link
    We study minimal immersions of closed surfaces (of genus g2g \ge 2) in hyperbolic 3-manifolds, with prescribed data (σ,tα)(\sigma, t\alpha), where σ\sigma is a conformal structure on a topological surface SS, and αdz2\alpha dz^2 is a holomorphic quadratic differential on the surface (S,σ)(S,\sigma). We show that, for each t(0,τ0)t \in (0,\tau_0) for some τ0>0\tau_0 > 0, depending only on (σ,α)(\sigma, \alpha), there are at least two minimal immersions of closed surface of prescribed second fundamental form Re(tα)Re(t\alpha) in the conformal structure σ\sigma. Moreover, for tt sufficiently large, there exists no such minimal immersion. Asymptotically, as t0t \to 0, the principal curvatures of one minimal immersion tend to zero, while the intrinsic curvatures of the other blow up in magnitude.Comment: 16 page

    User evaluation of a market-based recommender system

    No full text
    Recommender systems have been developed for a wide variety of applications (ranging from books, to holidays, to web pages). These systems have used a number of different approaches, since no one technique is best for all users in all situations. Given this, we believe that to be effective, systems should incorporate a wide variety of such techniques and then some form of overarching framework should be put in place to coordinate them so that only the best recommendations (from whatever source) are presented to the user. To this end, in our previous work, we detailed a market-based approach in which various recommender agents competed with one another to present their recommendations to the user. We showed through theoretical analysis and empirical evaluation with simulated users that an appropriately designed marketplace should be able to provide effective coordination. Building on this, we now report on the development of this multi-agent system and its evaluation with real users. Specifically, we show that our system is capable of consistently giving high quality recommendations, that the best recommendations that could be put forward are actually put forward, and that the combination of recommenders performs better than any constituent recommende

    Nuclear shell-model calculations for 6Li and 14N with different NN potentials

    Full text link
    Two ``phase-shift equivalent'' local NN potentials with different parametrizations, Reid93 and NijmII, which were found to give nearly identical results for the triton by Friar et al, are shown to yield remarkably similar results for 6Li and 14N in a (0+2)hw no-core space shell-model calculation. The results are compared with those for the widely used Hamada-Johnson hard-core and the original Reid soft-core potentials, which have larger deuteron D-state percentages. The strong correlation between the tensor strength and the nuclear binding energy is confirmed. However, many nuclear-structure properties seem to be rather insensitive to the details of the NN potential and, therefore, cannot be used to test various NN potentials. (Submitted to Phys. Rev. C on Nov. 9, 1993 as a Brief Report.)Comment: 12 text pages and 1 figure (Figure available upon request), University of Arizona Physics Preprint (Number not yet assigned

    Large-space shell-model calculations for light nuclei

    Full text link
    An effective two-body interaction is constructed from a new Reid-like NNNN potential for a large no-core space consisting of six major shells and is used to generate the shell-model properties for light nuclei from AA=2 to 6. (For practical reasons, the model space is partially truncated for AA=6.) Binding energies and other physical observables are calculated and compare favorably with experiment.Comment: prepared using LaTex, 21 manuscript pages, no figure

    Simple approximation for the starting-energy-independent two-body effective interaction with applications to 6Li

    Full text link
    We apply the Lee-Suzuki iteration method to calculate the linked-folded diagram series for a new Nijmegen local NN potential. We obtain an exact starting-energy-independent effective two-body interaction for a multi-shell, no-core, harmonic-oscillator model space. It is found that the resulting effective-interaction matrix elements can be well approximated by the Brueckner G-matrix elements evaluated at starting energies selected in a simple way. These starting energies are closely related to the energies of the initial two-particle states in the ladder diagrams. The ``exact'' and approximate effective interactions are used to calculate the energy spectrum of 6Li in order to test the utility of the approximate form.Comment: 15 text pages and 2 PostScript figures (available upon request). University of Arizona preprint, Number unassigne

    Mean-field Based Approaches to Pairing Correlations in Atomic Nuclei

    Full text link
    The evolution of the pairing correlations from closed shell to middle shell nuclei is analyzed with a Finite Range Density Dependent interaction in the Sn isotopes. As theoretical approaches we use the Hartree-Fock-Bogoliubov, the Lipkin-Nogami, their particle number projected counterparts and the full variation after particle number projection method. We find that whereas all approaches succeed rather well in the description of the total energy they differ significantly in the pairing correlation content of the wave functions. The description of the evolution from the weak to the strong pairing regime is also approach dependent, specially at shell closure.Comment: 14 pages, 5 figure

    Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog

    Full text link
    We present extensive 75As NMR and NQR data on the superconducting arsenides PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the superconducting gap is shown to be isotropic, the spin lattice relaxation rate 1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a step-wise variation at low temperatures. The Knight shift decreases below Tc and shows a step-wise T variation as well. These results indicate spinsinglet superconductivity with multiple gaps in the Fe-arsenides. The Fe antiferromagnetic spin fluctuations are anisotropic and weaker compared to underdoped copper-oxides or cobalt-oxide superconductors, while there is no significant electron correlations in LaNiAsO0.9F0.1. We will discuss the implications of these results and highlight the importance of the Fermi surface topology.Comment: 6 pages, 11 figure

    The Generalized Dirichlet to Neumann map for the KdV equation on the half-line

    Full text link
    For the two versions of the KdV equation on the positive half-line an initial-boundary value problem is well posed if one prescribes an initial condition plus either one boundary condition if qtq_{t} and qxxxq_{xxx} have the same sign (KdVI) or two boundary conditions if qtq_{t} and qxxxq_{xxx} have opposite sign (KdVII). Constructing the generalized Dirichlet to Neumann map for the above problems means characterizing the unknown boundary values in terms of the given initial and boundary conditions. For example, if {q(x,0),q(0,t)}\{q(x,0),q(0,t) \} and {q(x,0),q(0,t),qx(0,t)}\{q(x,0),q(0,t),q_{x}(0,t) \} are given for the KdVI and KdVII equations, respectively, then one must construct the unknown boundary values {qx(0,t),qxx(0,t)}\{q_{x}(0,t),q_{xx}(0,t) \} and {qxx(0,t)}\{q_{xx}(0,t) \}, respectively. We show that this can be achieved without solving for q(x,t)q(x,t) by analysing a certain ``global relation'' which couples the given initial and boundary conditions with the unknown boundary values, as well as with the function Φ(t)(t,k)\Phi^{(t)}(t,k), where Φ(t)\Phi^{(t)} satisifies the tt-part of the associated Lax pair evaluated at x=0x=0. Indeed, by employing a Gelfand--Levitan--Marchenko triangular representation for Φ(t)\Phi^{(t)}, the global relation can be solved \emph{explicitly} for the unknown boundary values in terms of the given initial and boundary conditions and the function Φ(t)\Phi^{(t)}. This yields the unknown boundary values in terms of a nonlinear Volterra integral equation.Comment: 21 pages, 3 figure

    Effect of La doping on magnetic structure in heavy fermion CeRhIn5

    Full text link
    The magnetic structure of Ce0.9La0.1RhIn5 is measured using neutron diffraction. It is identical to the incommensurate transverse spiral for CeRhIn5, with a magnetic wave vector q_M=(1/2,1/2,0.297), a staggered moment of 0.38(2)Bohr magneton per Ce at 1.4K and a reduced Neel temperature of 2.7 K.Comment: 5 pages, 2 figures, 1 table. Conf. SCES'200

    Approximate particle number projection for finite range density dependent forces

    Get PDF
    The Lipkin-Nogami method is generalized to deal with finite range density dependent forces. New expressions are derived and realistic calculations with the Gogny force are performed for the nuclei 164^{164}Er and 168^{168}Er. The sharp phase transition predicted by the mean field approximation is washed out by the Lipkin-Nogami approach; a much better agreement with the experimental data is reached with the new approach than with the Hartree-Fock_Bogoliubov one, specially at high spins.Comment: 5 pages, RevTeX 3.0, 3 postscript figures included using uufiles. Submitted to Phys. Rev. Let
    corecore