12 research outputs found
Small RNA zippers lock miRNA molecules and block miRNA function in mammalian cells.
MicroRNAs (miRNAs) loss-of-function phenotypes are mainly induced by chemically modified antisense oligonucleotides. Here we develop an alternative inhibitor for miRNAs, termed \u27small RNA zipper\u27. It is designed to connect miRNA molecules end to end, forming a DNA-RNA duplex through a complementary interaction with high affinity, high specificity and high stability. Two miRNAs, miR-221 and miR-17, are tested in human breast cancer cell lines, demonstrating the 70∼90% knockdown of miRNA levels by 30-50 nM small RNA zippers. The miR-221 zipper shows capability in rescuing the expression of target genes of miR-221 and reversing the oncogenic function of miR-221 in breast cancer cells. In addition, we demonstrate that the miR-221 zipper attenuates doxorubicin resistance with higher efficiency than anti-miR-221 in human breast cancer cells. Taken together, small RNA zippers are a miRNA inhibitor, which can be used to induce miRNA loss-of-function phenotypes and validate miRNA target genes
Association between protein-to-energy ratio and overweight/obesity in children and adolescents in the United States: a cross-sectional study based on NHANES
BackgroundThe dietary protein proportion may be crucial in triggering overweight and obesity among children and adolescents.MethodsCross-sectional data from 4,336 children and adolescents who participated in the National Health and Nutrition Survey (NHANES) between 2011 and March 2020 were analyzed. Multivariate logistic regression was used to calculate odds ratio (OR) and 95% confidence interval (CI). Restricted cubic splines assessed the nonlinear relationships between dietary protein intake and the prevalence of overweight and obesity.ResultsAdjusted logistic regression models showed that each 1% increase in dietary protein proportion was associated with a 4% higher risk of overweight and obesity (OR = 1.04, 95% CI: 1.01–1.07). A nonlinear relationship was noted in children aged 6–11 years (P < 0.05), as demonstrated by restricted cubic spline analysis. After dividing dietary protein intake into quartiles, the highest quartile had an adjusted OR of 2.07 (95% CI: 1.35, 3.16, P = 0.001) compared to the lowest, among children aged 6–11 years.ConclusionDietary protein intake is positively linked to overweight and obesity in American children, irrespective of individual characteristics and total energy consumption
Systemic cytokines inhibition with Imp7 siRNA nanoparticle ameliorates gut injury in a mouse model of ventilator-induced lung injury
Mechanical ventilation (MV) may negatively affect the lungs and cause the release of inflammatory mediators, resulting in extra-pulmonary organ dysfunction. Studies have revealed systemically elevated levels of proinflammatory cytokines in animal models of ventilator-induced lung injury (VILI); however, whether these cytokines have an effect on gut injury and the mechanisms involved remain unknown. In this study, VILI was generated in mice with high tidal volume mechanical ventilation (20 ml/kg). Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 concentrations in serum and gut measured by ELISA showed significant elevation in the VILI mice. Significant increases in gut injury and PANoptosis were observed in the VILI mice, which were positively correlated with the serum levels of TNF-α, IL-1β, and IL-6. The VILI mice displayed intestinal barrier defects, decreased expressions of occludin and zonula occludin-1 (ZO-1), and increased expression of claudin-2 and the activation of myosin light chain (MLC). Importantly, intratracheal administration of Imp7 siRNA nanoparticle effectively inhibited cytokines production and protected mice from VILI-induced gut injury. These data provide evidence of systemic cytokines contributing to gut injury following VILI and highlight the possibility of targeting cytokines inhibition via Imp7 siRNA nanoparticle as a potential therapeutic intervention for alleviating gut injury following VILI
Comparative iTRAQ proteomic profiling of sweet orange fruit on sensitive and tolerant rootstocks infected by 'Candidatus Liberibacter asiaticus'.
Citrus Huanglongbing (HLB), which is also known as citrus greening, is a destructive disease continuing to devastate citrus production worldwide. Although all citrus varieties can be infected with 'Candidatus Liberibacter asiaticus' (CaLas), a certain level of HLB tolerance of scion varieties can be conferred by some rootstocks. To understand the effects of rootstock varieties on orange fruit under CaLas stress, comparative iTRAQ proteomic profilings were conducted, using fruit from 'Valencia' sweet orange grafted on the sensitive ('Swingle') and tolerant rootstocks (a new selection called '46x20-04-48') infected by CaLas as experimental groups, and the same plant materials without CaLas infection as controls. The symptomatic fruit on 'Swingle' had 573 differentially-expressed (DE) proteins in comparison with their healthy fruit on the same rootstock, whereas the symptomatic fruit on '46x20-04-48' had 263 DE proteins. Many defense-associated proteins were down-regulated in the symptomatic fruit on 'Swingle' rootstock that were seldom detected in the symptomatic fruit on the '46x20-04-48' rootstock, especially the proteins involved in the jasmonate biosynthesis (AOC4), jasmonate signaling (ASK2, RUB1, SKP1, HSP70T-2, and HSP90.1), protein hydrolysis (RPN8A and RPT2a), and vesicle trafficking (SNAREs and Clathrin) pathways. Therefore, we predict that the down-regulated proteins involved in the jasmonate signaling pathway and vesicle trafficking are likely to be related to citrus sensitivity to the CaLas pathogen
Neonatal Heart-Enriched miR-708 Promotes Differentiation of Cardiac Progenitor Cells in Rats
Cardiovascular disease is becoming the leading cause of death throughout the world. However, adult hearts have limited potential for regeneration after pathological injury, partly due to the quiescent status of stem/progenitor cells. Reactivation of cardiac stem/progenitor cells to create more myocyte progeny is one of the key steps in the regeneration of a damaged heart. In this study, miR-708 was identified to be enriched in the neonatal cardiomyocytes of rats, but this has not yet been proven in adult humans. A lower level of miR-708 in c-kit(+) stem/progenitor cells was detected compared to non-progenitors. Overexpression of miR-708 induced cardiomyocyte differentiation of cardiac stem/progenitor cells. This finding strengthened the potential of applying miRNAs in the regeneration of injured hearts, and this indicates that miR-708 could be a novel candidate for treatment of heart diseases
miR-10a regulates proliferation of human cardiomyocyte progenitor cells by targeting GATA6.
microRNAs (miRNAs) play essential roles in cardiogenesis. The altered expression of miRNAs can result in cardiac malformations by inducing abnormalities in the behavior of cardiac cells. However, the role of miR-10a in the regulation of cardiomyocyte progenitor cells (CMPCs) remains undetermined. In the present study, we found that up- or down-regulation of miR-10a inhibited or promoted the proliferation of human CMPCs, respectively, without affecting their differentiation toward cardiomyocytes. miR-10a bound to GATA6 directly and reduced GATA6 expression. Over-expression of GATA6 greatly attenuated the miR-10a-mediated inhibitory effect on the proliferation of human CMPCs. Thus, our results indicate that miR-10a could effectively modulate the proliferation of human CMPCs by targeting GATA6. The finding provides novel insights into the potency of miR-10a during heart development
Prevalence, Risk Factors, and Complaints Screening Tool Exploration of Subjective Cognitive Decline in a Large Cohort of the Chinese Population
Background: Substantial studies have reported the prevalence and the affecting factors of subjective cognitive decline (SCD). The complaints screening scale has also been used for probing. However, little is known in China. Objective: To investigate the prevalence and risk factors of SCD, and explore an SCD complaints screening scale in China. Methods: Stratified cluster random sampling was conducted. 2,689 residents aged 60-80 years completed questionnaire 1. 814 residents were included for clinical and neuropsychological evaluations. Two standards were used to make the diagnosis of mild cognitive impairment (MCI) and SCD, and a preliminary screening rate comparison was carried out. Finally, we assessed the risk factors of SCD and the correlation between the SCD-questionnaire 9 (SCD-Q9) and the Auditory Verbal Learning Test-Long Delay Free Recall (AVLT-LR). Results: 1) Standard 1 (ADNI2): the prevalence of SCD was 18.8% (95% CI = 14.7-22.9%) and zero conformed to six criteria (SCD plus). 2) Standard 2 (Jak/Bondi): the prevalence of SCD was 14.4% (95% CI = 10.7-18.1%). 3) Standard 1 had a relatively higher false positive rate, whereas Standard 2 had higher false negative rate. 4) Age, low education, fewer close friends, and daily drinking were independent risk factors for SCD progressing to MCI. 5) Total points of SCD-Q9 were negatively correlated to the value of AVLT-LR. Conclusions: The prevalence of SCD is high in the ShunYi District in Beijing, China. Age, low education, less social support, and daily drinking are independent risk factors. The brief SCD-Q9 can be used as a reference
miR-10a does not influence hCMPC differentiation toward cardiomyocytes.
<p>A. Representative image of differentiating hCMPCs with manipulated expression of miR-10a or mock. Cells were stained with DAPI, α-actinin and Trop I (×200). B. Data collected from A. *P<0.05, n = 6. C. Relative expression of cardiomyocyte markers in differentiating hCMPCs transfected with miR-10a mimics. D. The same markers were tested in hCMPCs with inhibited miR-10a. The expression level of GAPDH was used as the control. *P<0.05, n = 6.</p