56,300 research outputs found
Why not Merge the International Monetary Fund (IMF) with the International Bank for Reconstruction and Development (World Bank)
Motivation: Cellular Electron CryoTomography (CECT) is an emerging 3D imaging technique that visualizes subcellular organization of single cells at sub-molecular resolution and in near-native state. CECT captures large numbers of macromolecular complexes of highly diverse structures and abundances. However, the structural complexity and imaging limits complicate the systematic de novo structural recovery and recognition of these macromolecular complexes. Efficient and accurate reference-free subtomogram averaging and classification represent the most critical tasks for such analysis. Existing subtomogram alignment based methods are prone to the missing wedge effects and low signal-to-noise ratio (SNR). Moreover, existing maximum-likelihood based methods rely on integration operations, which are in principle computationally infeasible for accurate calculation. Results: Built on existing works, we propose an integrated method, Fast Alignment Maximum Likelihood method (FAML), which uses fast subtomogram alignment to sample sub-optimal rigid transformations. The transformations are then used to approximate integrals for maximum-likelihood update of subtomogram averages through expectation-maximization algorithm. Our tests on simulated and experimental subtomograms showed that, compared to our previously developed fast alignment method (FA), FAML is significantly more robust to noise and missing wedge effects with moderate increases of computation cost. Besides, FAML performs well with significantly fewer input subtomograms when the FA method fails. Therefore, FAML can serve as a key component for improved construction of initial structuralmodels frommacromolecules captured by CECT
Low-temperature heat transport of Nd_2CuO_4: Roles of Nd magnons and spin-structure transitions
We report the magnetic-field dependence of thermal conductivity (\kappa) of
an insulating cuprate Nd_2CuO_4 at very low temperatures down to 0.3 K. It is
found that apart from the paramagnetic moments scattering on phonons, the
Nd^{3+} magnons can act as either heat carriers or phonon scatterers, which
strongly depends on the long-range antiferromagnetic transition and the
field-induced transitions of spin structure. In particular, the Nd^{3+} magnons
can effectively transport heat in the spin-flopped state of the Nd^{3+}
sublattice. However, both the magnon transport and the magnetic scattering are
quenched at very high fields. The spin re-orientations under the in-plane field
can be conjectured from the detailed field dependence of \kappa.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.
Correlations among superconductivity, structural instability, and band filling in Nb1-xB2 at the critical point x=0.2
We performed an extensive investigation on the correlations among
superconductivity, structural instability and band filling in Nb1-xB2
materials. Structural measurements reveal that a notable phase transformation
occurs at x=0.2, corresponding to the Fermi level (EF) in the pseudogap with
the minimum total density of states (DOS) as demonstrated by the
first-principles calculations. Superconductivity in Nb1-xB2 generally becomes
visible in the Nb-deficient materials with x=0.2. Electron energy-loss
spectroscopy (EELS) measurements on B K-edge directly demonstrated the presence
of a chemical shift arising from the structural transformation. Our
systematical experimental results in combination with theoretical analysis
suggest that the emergence of hole states in the sigma-bands plays an important
role for understanding the superconductivity and structural transition in
Nb1-xB2.Comment: 16 pages, 4 figure
- …
