127,771 research outputs found

    Multiple Chirality in Nuclear Rotation: A Microscopic View

    Full text link
    Covariant density functional theory and three-dimensional tilted axis cranking are used to investigate multiple chirality in nuclear rotation for the first time in a fully self-consistent and microscopic way. Two distinct sets of chiral solutions with negative and positive parities, respectively, are found in the nucleus 106Rh. The negative-parity solutions reproduce well the corresponding experimental spectrum as well as the B(M1)/B(E2) ratios of the transition strengths. This indicates that a predicted positive-parity chiral band should also exist. Therefore, it provides a further strong hint that multiple chirality is realized in nuclei.Comment: 15 pages, 5 figures, 1 tabl

    Variational-Iterative Solution of Ground State for Central Potential

    Full text link
    The newly developed iterative method based on Green function defined by quadratures along a single trajectory is combined with the variational method to solve the ground state quantum wave function for central potentials. As an example, the method is applied to discuss the ground state solution of Yukawa potential, using Hulthen solution as the trial function.Comment: 9 pages with 1 tabl

    Detecting relic gravitational waves in the CMB: A statistical bias

    Get PDF
    Analyzing the imprint of relic gravitational waves (RGWs) on the cosmic microwave background (CMB) power spectra provides a way to determine the signal of RGWs. In this Letter, we discuss a statistical bias, which could exist in the data analysis and has the tendency to overlook the RGWs. We also explain why this bias exists, and how to avoid it.Comment: 4 pages, 1 figur

    A Generalization of Mathieu Subspaces to Modules of Associative Algebras

    Full text link
    We first propose a generalization of the notion of Mathieu subspaces of associative algebras A\mathcal A, which was introduced recently in [Z4] and [Z6], to A\mathcal A-modules M\mathcal M. The newly introduced notion in a certain sense also generalizes the notion of submodules. Related with this new notion, we also introduce the sets σ(N)\sigma(N) and τ(N)\tau(N) of stable elements and quasi-stable elements, respectively, for all RR-subspaces NN of A\mathcal A-modules M\mathcal M, where RR is the base ring of A\mathcal A. We then prove some general properties of the sets σ(N)\sigma(N) and τ(N)\tau(N). Furthermore, examples from certain modules of the quasi-stable algebras [Z6], matrix algebras over fields and polynomial algebras are also studied.Comment: A new case has been added; some mistakes and misprints have been corrected. Latex, 31 page

    The mass estimate in narrow-line Seyfert 1 galaxies

    Full text link
    It is possible that narrow-line Seyfert 1 galaxies (NLS1s) are in the early stage of active galactic nuclei (AGNs) evolution. It is important to estimate the mass of supermassive black hole (SBH) in NLS1s. Here we considered the different kinds of methods to estimate the SBH masses in NLS1s. The virial mass from the Hβ\beta linewidth assuming random orbits of broad line regions (BLRs) is consistent with that from the statured soft X-ray luminosity, which showed that most of NLS1s are in the super-Eddington accretion state. The mass from the [O III] linewidth is systematically larger than that from above two methods. It is necessary to measure he bulge stellar dispersion and/or bulge luminosity in NLS1s.Comment: 2 Pages, 1 figure, in Prof. IAU Symposium No. 222, "The interplay among Black Holes, Stars and ISM in Galactic Nuclei ", eds. T. Storchi-Bergmann, Luis Ho and H. R. Schmit
    • …
    corecore