17 research outputs found

    Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes.

    Get PDF
    We demonstrated that an antibiotic cocktail (ABX)-perturbed gut microbiome is associated with reduced amyloid-β (Aβ) plaque pathology and astrogliosis in the male amyloid precursor protein (APP)SWE /presenilin 1 (PS1)ΔE9 transgenic model of Aβ amyloidosis. We now show that in an independent, aggressive APPSWE/PS1L166P (APPPS1-21) mouse model of Aβ amyloidosis, an ABX-perturbed gut microbiome is associated with a reduction in Aβ pathology and alterations in microglial morphology, thus establishing the generality of the phenomenon. Most importantly, these latter alterations occur only in brains of male mice, not in the brains of female mice. Furthermore, ABX treatment lead to alterations in levels of selected microglial expressed transcripts indicative of the "M0" homeostatic state in male but not in female mice. Finally, we found that transplants of fecal microbiota from age-matched APPPS1-21 male mice into ABX-treated APPPS1-21 male restores the gut microbiome and partially restores Aβ pathology and microglial morphology, thus demonstrating a causal role of the microbiome in the modulation of Aβ amyloidosis and microglial physiology in mouse models of Aβ amyloidosis

    Modulation of γ-Secretase Reduces β-Amyloid Deposition in a Transgenic Mouse Model of Alzheimer's Disease

    Get PDF
    SummaryAlzheimer's disease (AD) is characterized pathologically by the abundance of senile plaques and neurofibrillary tangles in the brain. We synthesized over 1200 novel gamma-secretase modulator (GSM) compounds that reduced Aβ42 levels without inhibiting epsilon-site cleavage of APP and Notch, the generation of the APP and Notch intracellular domains, respectively. These compounds also reduced Aβ40 levels while concomitantly elevating levels of Aβ38 and Aβ37. Immobilization of a potent GSM onto an agarose matrix quantitatively recovered Pen-2 and to a lesser degree PS-1 NTFs from cellular extracts. Moreover, oral administration (once daily) of another potent GSM to Tg 2576 transgenic AD mice displayed dose-responsive lowering of plasma and brain Aβ42; chronic daily administration led to significant reductions in both diffuse and neuritic plaques. These effects were observed in the absence of Notch-related changes (e.g., intestinal proliferation of goblet cells), which are commonly associated with repeated exposure to functional gamma-secretase inhibitors (GSIs)
    corecore