40 research outputs found

    Diatom‐based reconstruction of multi‐timescale climate and environmental change from Lakes Dojran and Ohrid in the northeastern Mediterranean region

    Get PDF
    The southern Balkans is located at the juncture between the west–east and north–south contrasting hydroclimatic domains across the Mediterranean, and this study focuses on diatoms as indicators of late Quaternary climate change and recent human impact in Lakes Dojran and Ohrid. Lake Dojran (Macedonia/Greece) is a shallow and currently hypereutrophic lake controlled by a classic Mediterranean climate. The Lake Dojran diatom data provide a new insight into changes in lake level and trophic status during the Younger Dryas and Holocene in the northeastern Mediterranean region, and are also important in disentangling regional climate effects from local catchment dynamics during the Holocene. The pigment data from the upper part of the sequence provide clear evidence for accelerated eutrophication of Lake Dojran due to water abstraction and intensified agriculture during the recent several centuries. Ancient lakes in Europe are restricted to the southern Balkan region, and Lake Ohrid (Macedonia/Albania), under the influence of Mediterranean and somewhat continental climates, is a rare example with a high degree of biodiversity and endemism. In deep and highly oligotrophic Lake Ohrid, the diatom data provide a clear picture of Lateglacial and Holocene changes in temperature and lake productivity which is primarily modulated through stratification or mixing regime and associated nutrient redistribution in the water column, and comparison with the data from Lake Dojran reveals different responses of diatoms to climate in the contrasting types of lakes. Diatom analysis of a short core in the southeastern part of Lake Ohrid reveals human‐induced eutrophication of Lake Ohrid in the recent several decades influenced by nutrient transfer through springs from hydraulically‐linked Lake Prespa. Preliminary diatom analysis of the ICDP deep core in Lake Ohrid generates a preliminary interpretation of the response of diatoms to glacial–interglacial cycles and the evolution of endemic diatom species during the past more than one million years

    Topological superfluid of spinless Fermi gases in p-band honeycomb optical lattices with on-site rotation

    Full text link
    In this paper, we put forward to another route realizing topological superfluid (TS). In contrast to conventional method, spin-orbit coupling and external magnetic field are not requisite. Introducing an experimentally feasible technique called on-site rotation (OSR) into p-band honeycomb optical lattices for spinless Fermi gases and considering CDW and pairing on the same footing, we investigate the effects of OSR on superfluidity. The results suggest that when OSR is beyond a critical value, where CDW vanishes, the system transits from a normal superfluid (NS) with zero TKNN number to TS labeled by a non-zero TKNN number. In addition, phase transitions between different TS are also possible

    Topological Superfluid in one-dimensional Ultracold Atomic System with Spin-Orbit Coupling

    Full text link
    We propose a one-dimensional Hamiltonian H1DH_{1D} which supports Majorana fermions when dx2y2d_{x^{2}-y^{2}}-wave superfluid appears in the ultracold atomic system and obtain the phase-separation diagrams both for the time-reversal-invariant case and time-reversal-symmetry-breaking case. From the phase-separation diagrams, we find that the single Majorana fermions exist in the topological superfluid region, and we can reach this region by tuning the chemical potential μ\mu and spin-orbit coupling αR\alpha_{R}. Importantly, the spin-orbit coupling has realized in ultracold atoms by the recent experimental achievement of synthetic gauge field, therefore, our one-dimensional ultra-cold atomic system described by H1DH_{1D} is a promising platform to find the mysterious Majorana fermions.Comment: 5 papers, 2 figure

    Mediterranean winter rainfall in phase with African monsoons during the past 1.36 million years

    Get PDF
    Mediterranean climates are characterized by strong seasonal contrasts between dry summers and wet winters. Changes in winter rainfall are critical for regional socioeconomic development, but are difficult to simulate accurately1 and reconstruct on Quaternary timescales. This is partly because regional hydroclimate records that cover multiple glacial–interglacial cycles2,3 with different orbital geometries, global ice volume and atmospheric greenhouse gas concentrations are scarce. Moreover, the underlying mechanisms of change and their persistence remain unexplored. Here we show that, over the past 1.36 million years, wet winters in the northcentral Mediterranean tend to occur with high contrasts in local, seasonal insolation and a vigorous African summer monsoon. Our proxy time series from Lake Ohrid on the Balkan Peninsula, together with a 784,000-year transient climate model hindcast, suggest that increased sea surface temperatures amplify local cyclone development and refuel North Atlantic low-pressure systems that enter the Mediterranean during phases of low continental ice volume and high concentrations of atmospheric greenhouse gases. A comparison with modern reanalysis data shows that current drivers of the amount of rainfall in the Mediterranean share some similarities to those that drive the reconstructed increases in precipitation. Our data cover multiple insolation maxima and are therefore an important benchmark for testing climate model performance

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants

    Whole-genome sequence-based analysis of thyroid function

    Get PDF
    Tiina Paunio on työryhmän UK10K Consortium jäsen.Normal thyroid function is essential for health, but its genetic architecture remains poorly understood. Here, for the heritable thyroid traits thyrotropin (TSH) and free thyroxine (FT4), we analyse whole-genome sequence data from the UK10K project (N = 2,287). Using additional whole-genome sequence and deeply imputed data sets, we report meta-analysis results for common variants (MAF >= 1%) associated with TSH and FT4 (N = 16,335). For TSH, we identify a novel variant in SYN2 (MAF = 23.5%, P = 6.15 x 10(-9)) and a new independent variant in PDE8B (MAF = 10.4%, P = 5.94 x 10(-14)). For FT4, we report a low-frequency variant near B4GALT6/ SLC25A52 (MAF = 3.2%, P = 1.27 x 10(-9)) tagging a rare TTR variant (MAF = 0.4%, P = 2.14 x 10(-11)). All common variants explain >= 20% of the variance in TSH and FT4. Analysis of rare variants (MAFPeer reviewe

    TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport

    Get PDF
    Tiina Paunio on työryhmän UK10K jäsen.The analysis of individuals with ciliary chondrodysplasias can shed light on sensitive mechanisms controlling ciliogenesis and cell signalling that are essential to embryonic development and survival. Here we identify TCTEX1D2 mutations causing Jeune asphyxiating thoracic dystrophy with partially penetrant inheritance. Loss of TCTEX1D2 impairs retrograde intraflagellar transport (IFT) in humans and the protist Chlamydomonas, accompanied by destabilization of the retrograde IFT dynein motor. We thus define TCTEX1D2 as an integral component of the evolutionarily conserved retrograde IFT machinery. In complex with several IFT dynein light chains, it is required for correct vertebrate skeletal formation but may be functionally redundant under certain conditions.Peer reviewe
    corecore