1,125 research outputs found

    Advances in Biomimetic Apatite Coating on Metal Implants

    Get PDF

    Layered hybrid phase Li2NaV2(PO4)3/carbon dot nanocomposite cathodes for Li+/Na+ mixed-ion batteries

    Get PDF
    Hybrid phase Li2NaV2(PO4)3 (H-LNVP) is one of the most promising cathode materials for Li+/Na+ mixed-ion batteries.</p

    The Application of Cryogens in Liquid Fluid Energy Storage Systems

    Get PDF
    AbstractThis article describes the application of cryogens in liquid fluid energy storage systems and compares liquid fluid energy storage systems with conventional compressed air energy storage systems. The study focuses on the thermodynamic characteristics of different cryogens used in liquid fluid energy storage systems. It is found that liquid fluid energy storage systems have competitive factors like high energy density and no geographical limitation. A comparative analysis is conducted to present the advantages and disadvantages of different cryogens. The results show that liquid fluid energy storage systems have a promising future in large scale energy storage

    Study on the effect of biogas project on the development of lowcarbon circular economy -A case study of Beilangzhong eco-village

    Get PDF
    AbstractWith Beilangzhong eco-village as an example, the effects of the biogas project on the reduction of greenhouse gas (GHG) emission and its economic effects are analyzed. The results show that 1833.45t GHG (CO2 equivalent) was reduced, and an income of 1,117,000 Yuan (RMB), a net income of 958,500 Yuan (RMB), was gained by biogas sales, alternative energy, comprehensive utilization of anaerobic fermentation residues and the reduction of GHG emission, so the biogas project can greatly promote the establishment of low-carbon circular economy mode and sustainable development of ecological agriculture in Beilangzhong eco-village

    THE THERMO-HYDRODYNAMICS OF A CONCENTRIC OHMIC HEATER FOR PROCESSING DAIRY FLUIDS

    Get PDF
    The thermo-hydraulic performance of a 300W concentric annular ohmic heater was investigated. To minimize possible electrochemical reactions and corrosion, a higher frequency was applied and factors of field strength and frequency were studied. 2D computer simulation solving momentum, thermal and electrical energy was performed using the FlexPDE software. A good agreement between experimental and analytical analysis of static heating was obtained. There were significant differences between calculated and measured wall temperature near the entrance. The calculated outlet temperature was however in reasonable agreement with the experiment value

    3D porous Li3V2(PO4)3/hard carbon composites for improving the rate performance of lithium ion batteries

    Get PDF
    A 3D porous Li3V2(PO4)3/hard carbon composite delivers a capacity of 98 mA h g−1 after 1000 cycles at 10C.</p

    Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries

    Get PDF
    Alkali lignins and its degradation products in the soda papermaking black liquor (SPBL) are renewable resource with the highest natural carbon content. In this work we convert SPBL into the high-performance carbon-based nanocomposite anodes. The unique functional groups of lignin biomass induce spontaneous formation of graphene-like carbon sheet (GCS) in-situ doped SiC/S. The lamellar GCS/FeO nanocomposite (GCS/FO-NC) is facilely prepared via one-step in-situ thermo-chemical method at 700\ua0°C, in which donut shaped FeO nanoparticles with superlattices and inner surface are homogeneously embedded in the interlayer of GCS and are also anchored on its surface. The GCS/FO-NC anode exhibits a ultrahigh first discharge specific capacity of 3829\ua0mAh\ua0g at 50\ua0mA\ua0g in a coin-type Li ion battery, which is more than 4 times the theoretical capacity (924\ua0mAh\ua0g) of FeO and 5 times that of the graphene anode (744\ua0mAh. g). Even at a high current density (1000\ua0mA\ua0g), it still exhibits a high reversible capacity (750\ua0mAh\ua0g) after 1400 discharge/charge cycles. More importantly, the removal efficiency of chemical oxygen demand of SPBL is up to 83.4% during the synthesis process, which reduce its load to environment and synthetic cost of carbon-based nanocomposite anodes

    Properties and Performance of Two Wide Field of View Cherenkov/Fluorescence Telescope Array Prototypes

    Full text link
    A wide field of view Cherenkov/fluorescence telescope array is one of the main components of the Large High Altitude Air Shower Observatory project. To serve as Cherenkov and fluorescence detectors, a flexible and mobile design is adopted for easy reconfiguring of the telescope array. Two prototype telescopes have been constructed and successfully run at the site of the ARGO-YBJ experiment in Tibet. The features and performance of the telescopes are presented

    Superconductivity and single crystal growth of Ni0:05TaS2

    Full text link
    Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2 single crystal was successfully grown via the NaCl/KCl flux method. The obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and magnetization measurements reveal that the superconductivity transition temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux demonstrates that NaCl/KCl flux method will be a feasible method for single crystal growth of the layered transition metal dichalcogenides.Comment: 13pages, 6 figures, Published in SS

    Quasiparticle contribution to heat carriers relaxation time in DyBa2_2Cu3_3O7−x_{7-x} from heat diffusivity measurements

    Full text link
    It is shown that the controversy on phonons or electrons being the most influenced heat carriers below the critical temperature of high-Tc_c superconductors can be resolved. Electrical and thermal properties of the same DyBa2_2Cu3_3O7−x_{7-x} monodomain have been measured for two highly different oxygenation levels. While the oxygenated sample DyBa2_2Cu3_3O7_{7} has very good superconducting properties (Tc=90T_c=90 K), the DyBa2_2Cu3_3O6.3_{6.3} sample exhibits an insulator behavior. A careful comparison between measurements of the {\bf thermal diffusivity} of both samples allows us to extract the electronic contribution. This contribution to the relaxation time of heat carriers is shown to be large below TcT_c and more sensitive to the superconducting state than the phonon contribution.Comment: 13 pages, 6 figure
    • …
    corecore