1,993 research outputs found
Suggestions for a non-monotonic feature logic
We use Scott's domain theory and methods from Reiter's default logic to suggest some ways of modelling default constraints in feature logic. We show how default feature rules, derived from default constraints, can be used to give ways to augment strict feature structures with default information
A new framework for consensus for discrete-time directed networks of multi-agents with distributed delays
Copyright @ 2012 Taylor & FrancisIn this article, the distributed consensus problem is considered for discrete-time delayed networks of dynamic agents with fixed topologies, where the networks under investigation are directed and the time-delays involved are distributed time delays including a single or multiple time delay(s) as special cases. By using the invariance principle of delay difference systems, a new unified framework is established to deal with the consensus for the discrete-time delayed multi-agent system. It is shown that the addressed discrete-time network with arbitrary distributed time delays reaches consensus provided that it is strongly connected. A numerical example is presented to illustrate the proposed methods.This work was supported in part by City University of Hong Kong under Grant 7008114, the Royal Society of the UK, the National Natural Science Foundation of China under Grants 60774073 and 61074129, and the Natural Science Foundation of Jiangsu Province of China under Grant BK2010313
Absence of anisotropic universal transport in YBCO
There exists significant in-plane anisotropy between and axis for
various properties in YBCO. However recent thermal conductivity measurement by
Chiao et al. which confirms previous microwave conductivity measurement by
Zhang et al., shows no obvious anisotropy in the context of universal
transport. We give a possible explanation of why the anisotropy is seen in most
properties but not seen in the universal transport.Comment: 4 pages, 4 figure
Chemically dealloyed Fe-based metallic glass with void channels-like architecture for highly enhanced peroxymonosulfate activation in catalysis
Metallic glasses (MGs) with their intrinsic disordered atomic structure and widely controllable atomic components have recently emerged as fascinating functional materials in wastewater treatment. Compared to crystalline alloys, the less-noble atomic components in monolithic metallic glass are more efficient to be selectively dissolved during dealloying process. This work reported a facile chemical dealloying approach to fabricate a void channels-like structured MG with the elemental components of Fe73.5Si13.5B9Cu1Nb3 for methylene blue (MB) degradation. Results indicated that the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs with the void channels-like morphology presented a significant improvement of catalytic efficiency and reusability. The dye degradation reaction rate (kobs) of the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs presented 3 times higher than their as-spun MGs. More importantly, the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs can be reused up to 25 times without significantly loosing catalytic efficiency. It was also found that the dealloyed Fe73.5Si13.5B9Cu1Nb3 MGs exhibited a greater corrosion resistance in the simulated dye solution compared to the as-spun ribbons, demonstrating a robust self-healing ability in catalytic activity. This work provides a novel view for designing MG catalysts with high efficiency and stability in worldwide energy and environmental concerns
Robust H∞ control for a class of nonlinear discrete time-delay stochastic systems with missing measurements
This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper is concerned with the problem of robust H∞ output feedback control for a class of uncertain discrete-time delayed nonlinear stochastic systems with missing measurements. The parameter uncertainties enter into all the system matrices, the time-varying delay is unknown with given low and upper bounds, the nonlinearities satisfy the sector conditions, and the missing measurements are described by a binary switching sequence that obeys a conditional probability distribution. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is exponentially stable in the mean square for the zero disturbance input and also achieves a prescribed H∞ performance level. By using the Lyapunov method and stochastic analysis techniques, sufficient conditions are first derived to guarantee the existence of the desired controllers, and then the controller parameters are characterized in terms of linear matrix inequalities (LMIs). A numerical example is exploited to show the usefulness of the results obtained.This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Associate Editor Dragan Nešic under the direction of Editor Hassan K. Khalil. This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the City University of Hong Kong under Grant 7001992, the Royal Society of the U.K. under an International Joint Project, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany
Domain wall roughening in dipolar films in the presence of disorder
We derive a low-energy Hamiltonian for the elastic energy of a N\'eel domain
wall in a thin film with in-plane magnetization, where we consider the
contribution of the long-range dipolar interaction beyond the quadratic
approximation. We show that such a Hamiltonian is analogous to the Hamiltonian
of a one-dimensional polaron in an external random potential. We use a replica
variational method to compute the roughening exponent of the domain wall for
the case of two-dimensional dipolar interactions.Comment: REVTEX, 35 pages, 2 figures. The text suffered minor changes and
references 1,2 and 12 were added to conform with the referee's repor
Molecular dynamic simulation of a homogeneous bcc -> hcp transition
We have performed molecular dynamic simulations of a Martensitic bcc->hcp
transformation in a homogeneous system. The system evolves into three
Martensitic variants, sharing a common nearest neighbor vector along a bcc
direction, plus an fcc region. Nucleation occurs locally, followed by
subsequent growth. We monitor the time-dependent scattering S(q,t) during the
transformation, and find anomalous, Brillouin zone-dependent scattering similar
to that observed experimentally in a number of systems above the transformation
temperature. This scattering is shown to be related to the elastic strain
associated with the transformation, and is not directly related to the phonon
response.Comment: 11 pages plus 8 figures (GIF format); to appear in Phys. Rev.
Bound state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry
The energy spectra and the corresponding two- component spinor wavefunctions
of the Dirac equation for the Rosen-Morse potential with spin and pseudospin
symmetry are obtained. The wave ( state) solutions for this
problem are obtained by using the basic concept of the supersymmetric quantum
mechanics approach and function analysis (standard approach) in the
calculations. Under the spin symmetry and pseudospin symmetry, the energy
equation and the corresponding two-component spinor wavefunctions for this
potential and other special types of this potential are obtained. Extension of
this result to state is suggested.Comment: 18 page
Magnetic field effects on the density of states of orthorhombic superconductors
The quasiparticle density of states in a two-dimensional d-wave
superconductor depends on the orientation of the in-plane external magnetic
field H. This is because. in the region of the gap nodes, the Doppler shift due
to the circulating supercurrents around a vortex depend on the direction of H.
For a tetragonal system the induced pattern is four-fold symmetric and, at zero
energy, the density of states exhibits minima along the node directions. But
YBa_2C_3O_{6.95} is orthorhombic because of the chains and the pattern becomes
two-fold symmetric with the position of the minima occuring when H is oriented
along the Fermi velocity at a node on the Fermi surface. The effect of impurity
scattering in the Born and unitary limit is discussed.Comment: 24 pages, 11 Figure
- …