110 research outputs found

    Learning over Knowledge-Base Embeddings for Recommendation

    Full text link
    State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines

    Modeling the void space inside the block

    Get PDF

    EEG-SVRec: An EEG Dataset with User Multidimensional Affective Engagement Labels in Short Video Recommendation

    Full text link
    In recent years, short video platforms have gained widespread popularity, making the quality of video recommendations crucial for retaining users. Existing recommendation systems primarily rely on behavioral data, which faces limitations when inferring user preferences due to issues such as data sparsity and noise from accidental interactions or personal habits. To address these challenges and provide a more comprehensive understanding of user affective experience and cognitive activity, we propose EEG-SVRec, the first EEG dataset with User Multidimensional Affective Engagement Labels in Short Video Recommendation. The study involves 30 participants and collects 3,657 interactions, offering a rich dataset that can be used for a deeper exploration of user preference and cognitive activity. By incorporating selfassessment techniques and real-time, low-cost EEG signals, we offer a more detailed understanding user affective experiences (valence, arousal, immersion, interest, visual and auditory) and the cognitive mechanisms behind their behavior. We establish benchmarks for rating prediction by the recommendation algorithm, showing significant improvement with the inclusion of EEG signals. Furthermore, we demonstrate the potential of this dataset in gaining insights into the affective experience and cognitive activity behind user behaviors in recommender systems. This work presents a novel perspective for enhancing short video recommendation by leveraging the rich information contained in EEG signals and multidimensional affective engagement scores, paving the way for future research in short video recommendation systems

    A Situation-aware Enhancer for Personalized Recommendation

    Full text link
    When users interact with Recommender Systems (RecSys), current situations, such as time, location, and environment, significantly influence their preferences. Situations serve as the background for interactions, where relationships between users and items evolve with situation changes. However, existing RecSys treat situations, users, and items on the same level. They can only model the relations between situations and users/items respectively, rather than the dynamic impact of situations on user-item associations (i.e., user preferences). In this paper, we provide a new perspective that takes situations as the preconditions for users' interactions. This perspective allows us to separate situations from user/item representations, and capture situations' influences over the user-item relationship, offering a more comprehensive understanding of situations. Based on it, we propose a novel Situation-Aware Recommender Enhancer (SARE), a pluggable module to integrate situations into various existing RecSys. Since users' perception of situations and situations' impact on preferences are both personalized, SARE includes a Personalized Situation Fusion (PSF) and a User-Conditioned Preference Encoder (UCPE) to model the perception and impact of situations, respectively. We conduct experiments of applying SARE on seven backbones in various settings on two real-world datasets. Experimental results indicate that SARE improves the recommendation performances significantly compared with backbones and SOTA situation-aware baselines.Comment: Accepted at the International Conference on Database Systems for Advanced Applications (DASFAA 2024

    WMFormer++: Nested Transformer for Visible Watermark Removal via Implict Joint Learning

    Full text link
    Watermarking serves as a widely adopted approach to safeguard media copyright. In parallel, the research focus has extended to watermark removal techniques, offering an adversarial means to enhance watermark robustness and foster advancements in the watermarking field. Existing watermark removal methods mainly rely on UNet with task-specific decoder branches--one for watermark localization and the other for background image restoration. However, watermark localization and background restoration are not isolated tasks; precise watermark localization inherently implies regions necessitating restoration, and the background restoration process contributes to more accurate watermark localization. To holistically integrate information from both branches, we introduce an implicit joint learning paradigm. This empowers the network to autonomously navigate the flow of information between implicit branches through a gate mechanism. Furthermore, we employ cross-channel attention to facilitate local detail restoration and holistic structural comprehension, while harnessing nested structures to integrate multi-scale information. Extensive experiments are conducted on various challenging benchmarks to validate the effectiveness of our proposed method. The results demonstrate our approach's remarkable superiority, surpassing existing state-of-the-art methods by a large margin

    Common Sense Enhanced Knowledge-based Recommendation with Large Language Model

    Full text link
    Knowledge-based recommendation models effectively alleviate the data sparsity issue leveraging the side information in the knowledge graph, and have achieved considerable performance. Nevertheless, the knowledge graphs used in previous work, namely metadata-based knowledge graphs, are usually constructed based on the attributes of items and co-occurring relations (e.g., also buy), in which the former provides limited information and the latter relies on sufficient interaction data and still suffers from cold start issue. Common sense, as a form of knowledge with generality and universality, can be used as a supplement to the metadata-based knowledge graph and provides a new perspective for modeling users' preferences. Recently, benefiting from the emergent world knowledge of the large language model, efficient acquisition of common sense has become possible. In this paper, we propose a novel knowledge-based recommendation framework incorporating common sense, CSRec, which can be flexibly coupled to existing knowledge-based methods. Considering the challenge of the knowledge gap between the common sense-based knowledge graph and metadata-based knowledge graph, we propose a knowledge fusion approach based on mutual information maximization theory. Experimental results on public datasets demonstrate that our approach significantly improves the performance of existing knowledge-based recommendation models.Comment: Accepted by DASFAA 202

    Sequential Recommendation with Latent Relations based on Large Language Model

    Full text link
    Sequential recommender systems predict items that may interest users by modeling their preferences based on historical interactions. Traditional sequential recommendation methods rely on capturing implicit collaborative filtering signals among items. Recent relation-aware sequential recommendation models have achieved promising performance by explicitly incorporating item relations into the modeling of user historical sequences, where most relations are extracted from knowledge graphs. However, existing methods rely on manually predefined relations and suffer the sparsity issue, limiting the generalization ability in diverse scenarios with varied item relations. In this paper, we propose a novel relation-aware sequential recommendation framework with Latent Relation Discovery (LRD). Different from previous relation-aware models that rely on predefined rules, we propose to leverage the Large Language Model (LLM) to provide new types of relations and connections between items. The motivation is that LLM contains abundant world knowledge, which can be adopted to mine latent relations of items for recommendation. Specifically, inspired by that humans can describe relations between items using natural language, LRD harnesses the LLM that has demonstrated human-like knowledge to obtain language knowledge representations of items. These representations are fed into a latent relation discovery module based on the discrete state variational autoencoder (DVAE). Then the self-supervised relation discovery tasks and recommendation tasks are jointly optimized. Experimental results on multiple public datasets demonstrate our proposed latent relations discovery method can be incorporated with existing relation-aware sequential recommendation models and significantly improve the performance. Further analysis experiments indicate the effectiveness and reliability of the discovered latent relations.Comment: Accepted by SIGIR 202
    corecore