21 research outputs found

    Rational Design, Synthesis and Biological Evaluation of Pyrimidine-4,6-diamine derivatives as Type-II inhibitors of FLT3 Selective Against c-KIT.

    Get PDF
    FMS-like Tyrosine Kinase 3 (FLT3) is a clinically validated target for acute myeloid leukemia (AML). Inhibitors targeting FLT3 have been evaluated in clinical studies and have exhibited potential to treat FLT3-driven AML. A frequent, clinical limitation is FLT3 selectivity, as concomitant inhibition of FLT3 and c-KIT is thought to cause dose-limiting myelosuppression. Through a rational design approach, novel FLT3 inhibitors were synthesized employing a pyridine/pyrimidine warhead. The most potent compound identified from the studies is compound 13a, which exhibited an IC50 value of 13.9 ± 6.5 nM against the FLT3 kinase with high selectivity over c-KIT. Mechanism of action studies suggested that 13a is a Type-II kinase inhibitor, which was also supported through computer aided drug discovery (CADD) efforts. Cell-based assays identified that 13a was potent on a variety of FLT3-driven cell lines with clinical relevance. We report herein the discovery and therapeutic evaluation of 4,6-diamino pyrimidine-based Type-II FLT3 inhibitors, which can serve as a FLT3-selective scaffold for further clinical development

    Isolation and Characterization of APETALA3 Orthologs and Promoters from the Distylous Fagopyrum esculentum

    No full text
    Common buckwheat (Fagopyrum esculentum) produces distylous flowers with undifferentiated petaloid tepals, which makes it obviously different from flowers of model species. In model species Arabidopsis, APETALA3 (AP3) is expressed in petal and stamen and specifies petal and stamen identities during flower development. Combining with our previous studies, we found that small-scale gene duplication (GD) event and alternative splicing (AS) of common buckwheat AP3 orthologs resulted in FaesAP3_1, FaesAP3_2 and FaesAP3_2a. FaesAP3_2 and FaesAP3_2a were mainly expressed in the stamen of thrum and pin flower. Promoters functional analysis suggested that intense GUS staining was observed in the whole stamen in pFaesAP3_2::GUS transgenic Arabidopsis, while intense GUS staining was observed only in the filament of stamen in pFaesAP3_1::GUS transgenic Arabidopsis. These suggested that FaesAP3_1 and FaesAP3_2 had overlapping functions in specifying stamen filament identity and work together to determine normal stamen development. Additionally, FaesAP3_2 and FaesAP3_2a owned the similar ability to rescue stamen development of Arabidopsis ap3-3 mutant, although AS resulted in a frameshift mutation and consequent omission of the complete PI-derived motif and euAP3 motif of FaesAP3_2a. These suggested that the MIK region of AP3-like proteins was crucial for determining stamen identity, while the function of AP3-like proteins in specifying petal identity was gradually obtained after AP3 Orthologs acquiring a novel C-terminal euAP3 motif during the evolution of core eudicots. Our results also provide a clue to understanding the early evolution of the functional specificity of euAP3-type proteins involving in floral organ development in core eudicots, and also suggested that FaesAP3_2 holds the potential application for biotechnical engineering to develop a sterile male line of F. esculentum

    Dydrogesterone affects the transcription of genes in GnRH and steroidogenesis pathways and increases the frequency of atretic follicles in zebrafish (Danio rerio)

    No full text
    Dydrogesterone (DDG) is a synthetic progestin broadly used in human and veterinary medicine and has been widely detected in aquatic environments. However, its potential effects on aquatic organisms are little documented. Here we investigate the short-term effects of DDG on the transcriptional and histological responses in adult zebrafish (Danio rerio). Adult zebrafish were exposed to 32.0, 305 and 2490 ng L-1 of DDG for 14 days. Real time quantitative PCR analysis showed that DDG significantly increased transcripts of most genes involved in the gonadotropin-releasing hormone (GnRH) pathway in the brain of female. In contrast, apparent down-regulation of these gene transcriptions was observed in the brain of males. The transcription of cyp19a1a in the ovary had a 23 fold increase at 2490 ng L-1 of DDG and the transcription of hsd17b2 at 305 and 2490 ng L-1 in the testis was enhanced by approximately 2.0 fold and 2.4 fold, respectively. Histopathological analysis revealed exposure to 2490 ng L-1 DDG significantly increased the percentage of atretic follicles in the ovary. The results of this study suggest that DDG has potential endocrine disrupting effects and affects the ovarian development in zebrafish. (C) 2018 Elsevier Ltd. All rights reserved

    Increased coiling frequency linked to apoptosis in the brain and altered thyroid signaling in zebrafish embryos (Danio rerio) exposed to the PBDE metabolite 6-OH-BDE-47

    No full text
    Polybrominated diphenyl ethers (PBDEs) are a group of brominated flame retardants that are ubiquitously detected in the environment and associated with adverse health outcomes. 6-OH-BDE-47 is a metabolite of the flame retardant, 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), and there is increasing concern regarding its developmental neurotoxicity and endocrine disrupting properties. In this study, we report that early life exposure in zebrafish (Danio rerio) embryos to 6-OH-BDE-47 (50 and 100 nM) resulted in higher coiling frequency and significantly increased apoptotic cells in the brain. These effects were partially rescued by overexpression of thyroid hormone receptor β (THRβ) mRNA. Moreover, exposure to 100 nM 6-OH-BDE-47 significantly reduced the number of hypothalamic 5-hydroxytryptamine (5-HT, serotonin)-immunoreactive (5-HT-ir) neurons and the mRNA expression of tryptophan hydroxylase 2 (TPH2). These results indicate that 6-OH-BDE-47 affected thyroid hormone regulation through THRβ and negatively impacted the nervous system, in turn, affecting coiling behavior. Correlations of these endpoints suggest that coiling frequency could be used as an indicator of neurotoxicity in embryos

    Discovery of pyrazolo-thieno[3,2-d]pyrimidinylamino-phenyl acetamides as type-II pan-tropomyosin receptor kinase (TRK) inhibitors: Design, synthesis, and biological evaluation

    No full text
    International audienceTropomyosin receptor kinase (TRK) represents an attractive oncology target for cancer therapy related to its critical role in cancer formation and progression. NTRK fusions are found to occur in 3.3% of lung cancers, 2.2% of colorectal cancers, 16.7% of thyroid cancers, 2.5% of glioblastomas, and 7.1% of pediatric gliomas. In this paper, we described the discovery of the type-II pan-TRK inhibitor 4c through the structure-based drug design strategy from the original hits 1b and 2b. Compound 4c exhibited excellent in vitro TRKA, TRKB, and TRKC kinase inhibitory activity and anti-proliferative activity against human colorectal carcinoma derived cell line KM12. In the NCI-60 human cancer cell lines screen, compound 4g demonstrated nearly 80% of growth inhibition for KM12, while only minimal inhibitory activity was observed for the remaining 59 cancer cell lines. Western blot analysis demonstrated that 4c and its urea cousin 4k suppressed the TPM3-TRKA autophosphorylation at the concentrations of 100 nM and 10 nM, respectively. The work presented that 2-(4-(thieno[3,2-d]pyrimidin-4-ylamino)phenyl)acetamides could serve as a novel scaffold for the discovery and development of type-II pan-TRK inhibitors for the treatment of TRK driven cancers

    Contamination of drinking water by neonicotinoid insecticides in China: Human exposure potential through drinking water consumption and percutaneous penetration

    No full text
    Neonicotinoids (NEOs) are the most widely used pesticides and have posed a serious threat to human health. However, data on human exposure to NEOs are extremely scarce. To bridge this gap, human exposure potential of NEOs through drinking water consumption and percutaneous penetration was evaluated with the influences of 17 age groups, 4 seasons, 6 regions, and 2 genders. The results showed that drinking water in the present study had an upper middle level of NEO contamination. Anthropogenic activity and weather condition played important roles in the regional distribution of NEOs in tap water. For both children and adults, NEOs intake from drinking water exposure (NDE) and percutaneous exposure (NPE) in the south regions of China are significantly higher than those in the north regions, while the order of NDE and NPE by season is summer > spring = autumn > winter. Furthermore, human age and gender also have remarkable impacts on NDE and NPE. The age groups of children subjected to the highest NDE and NPE were 9 months – 2 years old and 9–12 years old, respectively. This study provides insights into the role of seasonal and regional influence, age and gender in the risk of drinking water and percutaneous exposure to NEOs

    Medroxyprogesterone acetate affects sex differentiation and spermatogenesis in zebrafish

    No full text
    Medroxyprogesterone acetate (MPA) is a widely used synthetic progestin and it has been frequently detected in aquatic environments. However, its effects on aquatic organisms remain largely unknown. Here we investigated the chronic effects of MPA on sex differentiation and gonad development in zebrafish. Zebrafish larvae at 20 days post fertilization (dpf) were exposed to 4.32, 42.0, and 424 ng L-1 of MPA until they reached 140 dpf. The results showed that chronic exposure to 42.0 ng L-1 of MPA caused 60% proportion of males as well as significant up-regulation of dmrt1 ((similar to)1.79 fold) and hsd17b3 ((similar to)1.92 fold). Histological analysis showed MPA significantly increased the frequency of immature spermatocytes accompanied with the increased transcription of dmrt1 ((similar to)2.06 fold) and ar ((similar to)1.73 fold) in the testes. Meanwhile, MPA exposure significantly increased the transcription of lhb at all exposure concentrations in the males. In contrast, it significantly suppressed the tran- scription of lhb ((similar to)-8.06-fold) and fshb ((similar to)-6.35-fold) at 42.0 ng L-1 in the females. Collectively our results de- monstrated that MPA had androgenic activity, and could affect sex differentiation and spermatogenesis in zebrafish at environmentally relevant concentrations. The findings from this study suggest that MPA in the aquatic environment may pose potential androgenic risks to fish populations
    corecore