137 research outputs found

    Hub-Induced Synchronization in Scale-Free Networks with Cluster Structure

    Get PDF
    A recent research indicated that the corticocortical connectivity network of the cat possesses cluster structure and that each cluster in the network is scale-free and has a most connected hub. Motivated by that research, we slightly modify the network model and derive sufficient conditions for cluster synchronization of the modified network based on Lyapunov function method. The obtained results indicate that cluster synchronization can be induced by the hubs of the scale-free networks. In our opinion, the concept of hub-induced synchronization provides a better understanding of cluster synchronization in scale-free networks. Numerical examples are provided to demonstrate the effectiveness of the theoretical results

    The Application of Carbon Fiber Composites in Cryotank

    Get PDF
    To meet the design goal for lightweighting the next-generation launch vehicles, carbon fiber reinforced polymeric-based composites are being explored for cryogenic fuel tank applications. The applications of carbon fiber composites in liquid hydrogen (LH2) and liquid oxygen (LOX) fuel tanks were introduced in this chapter. The materials, processing, and design of DC-XA LH2 tank, X-33 LH2 tank, SLI LH2 tank, and CCTD Program tank were discussed. Lockheed Martin LOX tank and Space X LOX tank were introduced. Technology development, materials development, and development trend of cryogenic fuel tanks were discussed. Thin-ply hybrid laminates and out-of-autoclave tanks are projected for future space missions

    Doxorubicin resistance in breast cancer xenografts and cell lines can be counterweighted by microRNA-140-3p, through PD-L1 suppression

    Get PDF
    Background. Doxorubicin, a first-line chemotherapeutic drug for breast cancer, kills cancer cells by inducing DNA-crosslinking damage. Dysregulated micro-RNA (miRNA) is associated with the drug resistance of tumors. However, little is known about the effect of miRNA-140-3p on DOX resistance of breast cancer. Methods. The miRNA microarray was used to sequence the transcripts of DOX-chemoresistant breast cancer tissues and DOX-chemosensitive tissues. Then, the breast cancer tissue chip in the GEO database was also analyzed to screen the target gene. Flow cytometry, in situ hybridisation (ISH), immunohistochemistry (IHC), Western blot, cell proliferation assay, real-time PCR analyses (qRT-PCR), and pull-down assay were used to explore the effects of miRNA-140-3p and programmed death ligand-1 (PD-L1) on the chemoresistance of DOX-resistant breast cancer cells treated with DOX. In vivo, the DOX-resistant breast cancer cell lines treated with miRNA-140-3p overexpression were injected subcutaneously into mice to construct breast cancer subcutaneous xenograft tumor models. Results. Based on miRNA microarray, GEO database, and bioinformatics analysis, it was found that miRNA-140-3p and PD-L1 are the core molecules in the DOX resistance regulatory network in breast cancer, and lower miRNA-140-3p and higher PD-L1 expression levels were observed in DOX-resistant breast cancer tissues and cells. IHC results showed that compared with breast cancer tissues with high miRNA-140-3p expression, PD-L1 protein expression levels in breast cancer tissues with low miRNA-140-3p were significantly higher (P<0.01). Moreover, compared with DOX-sensitive tissues, the levels of PD-L1 protein expression in DOX-resistant tissues were significantly higher (P<0.01). In in vitro and in vivo experiments, the introduction of miRNA-140-3p decreased PD-L1 expression. Mechanically, we found that the MCF7/DOX and HS598T/DOX cells pretreated with miRNA140-3p inhibitor or exosomes containing PD-L1 have higher stemness and lower apoptosis rate, which can be abrogated by co-treating cells with anti-PD-L1 antibody or miRNA-140-3p mimic. Conclusions. MiRNA-140-3p can suppress PD-L1 expression in breast cancer cell-derived exosomes, thereby attenuating the chemoresistance induced by DOX in breast cancer

    First-principles study on transition metal-doped anatase TiO2

    Full text link

    Detection of Electromagnetic Seismic Precursors from Swarm Data by Enhanced Martingale Analytics

    Get PDF
    The detection of seismic activity precursors as part of an alarm system will provide opportunities for minimization of the social and economic impact caused by earthquakes. It has long been envisaged, and a growing body of empirical evidence suggests that the Earth’s electromagnetic field could contain precursors to seismic events. The ability to capture and monitor electromagnetic field activity has increased in the past years as more sensors and methodologies emerge. Missions such as Swarm have enabled researchers to access near-continuous observations of electromagnetic activity at second intervals, allowing for more detailed studies on weather and earthquakes. In this paper, we present an approach designed to detect anomalies in electromagnetic field data from Swarm satellites. This works towards developing a continuous and effective monitoring system of seismic activities based on SWARM measurements. We develop an enhanced form of a probabilistic model based on the Martingale theories that allow for testing the null hypothesis to indicate abnormal changes in electromagnetic field activity. We evaluate this enhanced approach in two experiments. Firstly, we perform a quantitative comparison on well-understood and popular benchmark datasets alongside the conventional approach. We find that the enhanced version produces more accurate anomaly detection overall. Secondly, we use three case studies of seismic activity (namely, earthquakes in Mexico, Greece, and Croatia) to assess our approach and the results show that our method can detect anomalous phenomena in the electromagnetic data

    Intracellular Ca2+ Oscillations, a Potential Pacemaking Mechanism in Early Embryonic Heart Cells

    Get PDF
    Early (E9.5–E11.5) embryonic heart cells beat spontaneously, even though the adult pacemaking mechanisms are not yet fully established. Here we show that in isolated murine early embryonic cardiomyocytes periodic oscillations of cytosolic Ca2+ occur and that these induce contractions. The Ca2+ oscillations originate from the sarcoplasmic reticulum and are dependent on the IP3 and the ryanodine receptor. The Ca2+ oscillations activate the Na+-Ca2+ exchanger, giving rise to subthreshold depolarizations of the membrane potential and/or action potentials. Although early embryonic heart cells are voltage-independent Ca2+ oscillators, the generation of action potentials provides synchronization of the electrical and mechanical signals. Thus, Ca2+ oscillations pace early embryonic heart cells and the ensuing activation of the Na+-Ca2+ exchanger evokes small membrane depolarizations or action potentials

    Full-Wave Analysis of Field-to-Line Coupling Effects Using 1D FDTD Method under Exciting Source with Different Bandwidths

    Get PDF
    With the aim to analyze field-to-line coupling effects based on energy spectrum, parallel finite-difference time-domain (FDTD) method is applied to calculate the induced voltage on overhead lines under high-power electromagnetic (HPEM) environment. Firstly, the energy distribution laws of HEMP (IEC 61000-2-9), HEMP (Bell Laboratory), HEMP (Paulino et al., 2010), and LEMP (IEC61000-4-5) are given. Due to the air-earth stratified medium, both the absorbing boundary and the connecting boundary applied to scattering by finite-length objects are separately set in aerial and underground parts. Moreover, the influence of line length on induced voltage is analyzed and discussed. The results indicate that the half-peak width is wider with the increase of the line length. But the steepness of induced voltage on the overhead line is invariable. There is no further increase in the peak of induced voltage especially when the line length increases to be equivalent to the wavelength of the frequency bands with the maximum energy

    Low-Temperature Gas Plasma Combined with Antibiotics for the Reduction of Methicillin-Resistant \u3ci\u3eStaphylococcus aureus\u3c/i\u3e Biofilm Both in Vitro and in Vivo

    Get PDF
    Biofilm infections in wounds seriously delay the healing process, and methicillin-resistant Staphylococcus aureus is a major cause of wound infections. In addition to inactivating micro-organisms, low-temperature gas plasma can restore the sensitivity of pathogenic microbes to antibiotics. However, the combined treatment has not been applied to infectious diseases. In this study, low-temperature gas plasma treatment promoted the effects of different antibiotics on the reduction of S. aureus biofilms in vitro. Low-temperature gas plasma combined with rifampicin also effectively reduced the S. aureus cells in biofilms in the murine wound infection model. The blood and histochemical analysis demonstrated the biosafety of the combined treatment. Our findings demonstrated that low-temperature gas plasma combined with antibiotics is a promising therapeutic strategy for wound infections
    • …
    corecore