72 research outputs found

    Spark-ignited kernel dynamics in fine ethanol sprays and their relations with minimum ignition energy

    Full text link
    Spark ignition of ethanol droplet/vapor/air mixture is studied with a Eulerian-Eulerian method and detailed chemical mechanism. The flame kernel-droplet interaction is quantified with an evaporation completion front (ECF). Two categories of spray flames can hence be defined based on the relative location between the ECF and flame front, i.e., homogeneous and heterogeneous spray flames. An element-based equivalence ratio (ER) at the flame front (flame ER for short) is introduced to measure the gas composition in evaporating sprays. For overall fuel-lean mixtures, quasi-stationary spherical flame (QSSF) occurs due to lean flame ER and the composition at the QSSF front is homogeneous. For overall fuel-rich two-phase mixtures, re-ignition, after the spark-ignited kernel fails, is observed when the droplet diameter is 15 {\mu}m for fuel sprays with both fuel-lean and fuel-rich background gas. This is due to rich flame ER and/or strong evaporative heat loss. Meanwhile, the kernel is born in a heterogeneous mixture and transition into homogeneous state is found. For both overall lean and rich two-phase mixtures, fuel droplets affect the ignitability and flame trajectories. Moreover, ignition energy affects the flame ER and front distance at the early stage of kernel development. Lastly, the minimum ignition energies (MIE) with different gas and overall ERs are investigated

    Numerical simulation of two-dimensional detonation propagation in partially pre-vaporized n-heptane sprays

    Get PDF
    In this paper, two dimensional detonation propagation in partially prevaporized n-heptane sprays is studied by using Eulerian/Lagrangian methods. The effects of droplet preevaporation on the detonation propagation are investigated. The general features and detailed structures of two-phase detonations are well captured with the present numerical methods. The results show that the detonation propagation speed and detonation structures are significantly affected by the preevaporated gas equivalence ratio. The numerical soot foils are used to characterize the influence of preevaporated gas equivalence ratio on the detonation propagation. Regular detonation cellular structures are observed for large preevaporated gas equivalence ratios, but when decreasing the preevaporated gas equivalence ratio, the detonation cellular structures become much more unstable and the average cell width also increases. It is also found that the preevaporated gas equivalence ratio has little effects on the volume averaged heat release when the detonation propagates stably. Moreover, the results also suggest that the detonation can propagate in the two-phase heptane and air mixture without preevaporation, but the detonation would be first quenched and then re-ignited when the preevaporated gas equivalence ratio is small or equal to zero

    On the evolution of fuel droplet evaporation zone and its interaction with the flame front in ignition of spray flames

    Full text link
    Evolution of fuel droplet evaporation zone and its interaction with the propagating flame front are studied in this work. A general theory is developed to describe the evolutions of flame propagation speed, flame temperature, droplet evaporation onset and completion locations in ignition and propagation of spherical flames. The influences of liquid droplet mass loading, heat exchange coefficient (or evaporation rate) and Lewis number on spherical spray flame ignition are studied. Two flame regimes are considered, i.e., heterogeneous and homogeneous flames, based on the mixture condition near the flame front. The results indicate that the spray flame trajectories are considerably affected by the ignition energy addition. The critical condition for successful ignition for the fuel-rich mixture is coincidence of inner and outer flame balls from igniting kernel and propagating flame. The flame balls always exist in homogeneous mixtures, indicating that ignition failure and critical successful events occur only in purely gaseous mixture. The fuel droplets have limited effects on minimum ignition energy, which however increases monotonically with the Lewis number. Moreover, flame kernel originates from heterogeneous mixtures due to the initially dispersed droplets near the spark. The evaporative heat loss in the burned and unburned zones of homogeneous and heterogeneous spray flames is also evaluated, and the results show that for the failed flame kernels, evaporative heat loss behind and before the flame front first increases and then decreases. The evaporative heat loss before the flame front generally increases, although non-monotonicity exists, when the flame is successfully ignited and propagate outwardly. For heterogeneous flames, the ratio of the heat loss from the burned zone to the total one decreases as the flame expands

    Transmission of hydrogen detonation across a curtain of dilute inert particles

    Full text link
    Transmission of hydrogen detonation wave (DW) in an inert particle curtain is simulated using the Eulerian-Lagrangian approach with gas-particle two-way coupling. A detailed chemical mechanism is used for hydrogen detonative combustion and parametric studies are conducted based on a two-dimensional computational domain. A detonation map of propagation and extinction corresponding to various particle sizes, concentrations, and curtain thicknesses is plotted. It is shown that the critical curtain thickness decreases considerably when the particle concentration is less than the critical value. The effects of curtain thickness on the trajectories of peak pressure, shock front speed, and heat release rate are examined. Three propagation modes of the DW in particle curtain are found: detonation transmission, partial extinction and detonation reinitiation, and detonation extinction. The chemical explosive mode analysis confirms that a detonation re-initiation event is caused by a re-initiation point with high pressure and explosive propensity, resulting from transverse shock focusing. The influence of particle dimeter and concentration, and curtain thickness on the DW are also examined with peak pressure trajectories, shock speed, and interphase exchange rates of energy and momentum. Furthermore, the evolutions of curtain morphologies are analyzed by the particle velocity, volume fraction, Stokes drag and Archimedes force. This analysis confirms the importance of the drag force in influencing the change of curtain morphologies. Different curtain evolution regimes are found: quasi-stationary regime, shrinkage regime, constant-thickness regime, and expansion regime. Finally, the influences of the curtain thickness on the characteristic time of curtain evolutions are studied

    Direct detonation initiation in hydrogen/air mixture: effects of compositional gradient and hotspot condition

    Full text link
    Two-dimensional simulations are conducted to investigate the direct initiation of cylindrical detonation in hydrogen/air mixtures with detailed chemistry. The effects of hotspot condition and mixture composition gradient on detonation initiation are studied. Different hotspot pressure and composition are first considered in the uniform mixture. It is found that detonation initiation fails for low hotspot pressures and supercritical regime dominates with high hotspot pressures. Detonation is directly initiated from the reactive hotspot, whilst it is ignited somewhere beyond the nonreactive hotspots. Two cell diverging patterns (i.e., abrupt and gradual) are identified and the detailed mechanisms are analyzed. Moreover, cell coalescence occurs if many irregular cells are generated initially, which promotes the local cell growing. We also consider nonuniform detonable mixtures. The results show that the initiated detonation experiences self-sustaining propagation, highly unstable propagation, and extinction in mixtures with a linearly decreasing equivalence ratio along the radial direction respectively, i.e., 1 to 0.9, 1 to 0.5 and 1 to 0. Moreover, the hydrodynamic structure analysis shows that, for the self-sustaining detonations, the hydrodynamic thickness increases at the overdriven stage, decreases as the cells are generated, and eventually become almost constant at the cell diverging stage, within which the sonic plane shows a sawtooth pattern. However, in the detonation extinction cases, the hydrodynamic thickness continuously increases, and no sawtooth sonic plane can be observed

    Modelling particle collisions in moderately dense curtain impacted by an incident shock wave

    Full text link
    The interactions between an incident shock and moderately dense particle curtain are simulated with the Eulerian-Lagrangian method. A customized solver based on OpenFOAM is extended with an improved drag model and collision model, and then validated against two benchmark experiments. In this work, parametric studies are performed considering different particle sizes, volume fractions, and curtain thicknesses. It is found that smaller particle size and larger volume fractions lead to stronger reflected shock and weaker transmitted shock. Different expansion stages of the curtain fronts are also studied in detail. Attention is paid to the particle collision effects on the curtain evolution behaviours. According to our results, for the mono-dispersed particle curtain, the collision effects on curtain front behaviors are small, even when the initial particle volume fraction is as high as 20%. This is due to the positive velocity gradient across the curtain after the shock wave passage, leading to faster motion of downstream particles than the upstream ones and hence no collision occurs. For the bi-dispersed particle curtain, the collision effects become important in the mixing region of different-size particles. Collisions decelerate small particles while accelerate large ones and cause velocity scattering. Moreover, increasing the bi-dispersed curtain thickness leads to multiple collision force peaks due to the local particle accumulations, which is the result of the delayed separation of different particle groups. Our results indicate that the collision model may be unnecessary to predict curtain fronts in mono-dispersed particles, but in bi-dispersed particles, the collision effects are important and therefore must be modelled
    • …
    corecore