404 research outputs found

    Mechanical characterization of individual polycrystalline carbon tubes for use in electrical nano-interconnects

    Get PDF
    Polycrystalline carbon tubes were generated by CVD inside electrochemically prepared nano-porous anodic aluminium oxide membranes. This method produced nano-tubes without catalyst, featuring polycrystalline and a few layer thick walls. Individual tubes could be isolated and suspended on microfabricated substrates such that they formed single-side clamped beams. These beams were then used to investigate their mechanical properties employing electrostatic forces for bending the tubes beyond their mechanical stability where pull-in occurs, which could be detected by monitoring the current flowing from the tube to the substrate

    MSS-DepthNet: Depth Prediction with Multi-Step Spiking Neural Network

    Full text link
    Event cameras are considered to have great potential for computer vision and robotics applications because of their high temporal resolution and low power consumption characteristics. However, the event stream output from event cameras has asynchronous, sparse characteristics that existing computer vision algorithms cannot handle. Spiking neural network is a novel event-based computational paradigm that is considered to be well suited for processing event camera tasks. However, direct training of deep SNNs suffers from degradation problems. This work addresses these problems by proposing a spiking neural network architecture with a novel residual block designed and multi-dimension attention modules combined, focusing on the problem of depth prediction. In addition, a novel event stream representation method is explicitly proposed for SNNs. This model outperforms previous ANN networks of the same size on the MVSEC dataset and shows great computational efficiency

    NP-Hardness of Tensor Network Contraction Ordering

    Full text link
    We study the optimal order (or sequence) of contracting a tensor network with a minimal computational cost. We conclude 2 different versions of this optimal sequence: that minimize the operation number (OMS) and that minimize the time complexity (CMS). Existing results only shows that OMS is NP-hard, but no conclusion on CMS problem. In this work, we firstly reduce CMS to CMS-0, which is a sub-problem of CMS with no free indices. Then we prove that CMS is easier than OMS, both in general and in tree cases. Last but not least, we prove that CMS is still NP-hard. Based on our results, we have built up relationships of hardness of different tensor network contraction problems.Comment: Jianyu Xu and Hanwen Zhang are equal contributors. 10 pages (reference and appendix excluded), 20 pages in total, 6 figure

    Learning to Prompt for Open-Vocabulary Object Detection with Vision-Language Model

    Get PDF
    Recently, vision-language pre-training shows great potential in open-vocabulary object detection, where detectors trained on base classes are devised for detecting new classes. The class text embedding is firstly generated by feeding prompts to the text encoder of a pre-trained vision-language model. It is then used as the region classifier to supervise the training of a detector. The key element that leads to the success of this model is the proper prompt, which requires careful words tuning and ingenious design. To avoid laborious prompt engineering, there are some prompt representation learning methods being proposed for the image classification task, which however can only be sub-optimal solutions when applied to the detection task. In this paper, we introduce a novel method, detection prompt (DetPro), to learn continuous prompt representations for open-vocabulary object detection based on the pre-trained vision-language model. Different from the previous classification-oriented methods, DetPro has two highlights: 1) a background interpretation scheme to include the proposals in image background into the prompt training; 2) a context grading scheme to separate proposals in image foreground for tailored prompt training. We assemble DetPro with ViLD, a recent state-of-the-art open-world object detector, and conduct experiments on the LVIS as well as transfer learning on the Pascal VOC, COCO, Objects365 datasets. Experimental results show that our DetPro outperforms the baseline ViLD in all settings, e.g., +3.4 APbox and +3.0 APmask improvements on the novel classes of LVIS. Code and models are available at https://github.com/dyabel/detpro.Comment: Accepted by CVPR 202

    Inherent Redundancy in Spiking Neural Networks

    Full text link
    Spiking Neural Networks (SNNs) are well known as a promising energy-efficient alternative to conventional artificial neural networks. Subject to the preconceived impression that SNNs are sparse firing, the analysis and optimization of inherent redundancy in SNNs have been largely overlooked, thus the potential advantages of spike-based neuromorphic computing in accuracy and energy efficiency are interfered. In this work, we pose and focus on three key questions regarding the inherent redundancy in SNNs. We argue that the redundancy is induced by the spatio-temporal invariance of SNNs, which enhances the efficiency of parameter utilization but also invites lots of noise spikes. Further, we analyze the effect of spatio-temporal invariance on the spatio-temporal dynamics and spike firing of SNNs. Then, motivated by these analyses, we propose an Advance Spatial Attention (ASA) module to harness SNNs' redundancy, which can adaptively optimize their membrane potential distribution by a pair of individual spatial attention sub-modules. In this way, noise spike features are accurately regulated. Experimental results demonstrate that the proposed method can significantly drop the spike firing with better performance than state-of-the-art SNN baselines. Our code is available in \url{https://github.com/BICLab/ASA-SNN}.Comment: Accepted by ICCV202
    • …
    corecore