106 research outputs found

    Scalar induced gravitational waves from Chern-Simons gravity during inflation era

    Full text link
    We investigate the scalar induced gravitational waves (SIGWs) in the Chern-Simons (CS) gravity with a dynamical scalar field during slow roll inflation. Due to the parity violation in the CS term, the SIGWs are generally polarized, which are effectively characterized by the degree of circular polarization. We derive the semianalytic expression to evaluate the power spectra and the degree of circular polarization of the SIGWs, which receive contributions from the general relativity and the parity-violating term, respectively. We find that the correction from the parity-violating CS term is negligible on large scales, which means that the degree of circular polarization of SIGWs is very small.Comment: 23 pages, references added, and a new discussion about a linear coupling function added. Version to be published in JCA

    Scalar induced gravitational waves in symmetric teleparallel gravity with a parity-violating term

    Full text link
    Gravitational waves (GWs) are useful to test gravitational theories and to probe the physics in the early universe. In this paper, we investigate the scalar induced gravitational waves (SIGWs) in symmetric teleparallel gravity with a parity-violating term. The presence of the parity-violating term leads to the velocity birefringence effect of the SIGWs. However, after taking into account the observational constraints on the speed of GWs, the contribution from the parity-violating term to SIGWs is negligible. Nevertheless, the contribution to SIGWs from the perturbations of the connection can be significant, and results in a multipeak structure in the energy density of SIGWs. This feature makes the symmetric teleparallel gravity distinguishable from the general relativity.Comment: 32 pages,2 figure

    A Novel Thermal Network Model Used for Temperature Calculation and Analysis on Brushless Doubly-Fed Generator With Winding Encapsulating Structure

    Get PDF
    © 1972-2012 IEEE. In recent years, magnetic-barrier rotor has been put forward for brushless doubly-fed generator (BDFG) application owing to its desirable performance, such as high power density and strong magnetic coupling ability. However, it also causes significant losses induced by harmonics and high temperature problem. Hence, it is a major challenge to evaluate Bref-DFG temperature rise fast and accurately. So far, aiming at magnetic-barrier rotor, there has been no accurate thermal network model established achieving this goal. In addition, wingding end encapsulating technology has been used for a few years and its heat dissipation potential is determined by the materials. Therefore, the application of novel material in winding encapsulating structure is desirable to improve the heat dissipation potential. In this paper, an equivalent thermal network model, thermal resistance models of magnetic-barrier rotor, and a winding encapsulating structure with novel materials are further established for thermal analysis. Subsequently, temperature distributions for BDFG components are also calculated by finite element method, while the results are compared with those by analytical method. The BDFG prototype is manufactured with experimental tests performed. The correctness of the equivalent thermal network models proposed in this paper is verified by the test results

    Rotor retaining sleeve design for a 1.12-MW high-speed PM machine

    Get PDF
    Permanent-magnet (PM) synchronous machines (PMSMs) can provide excellent performance in terms of torque density, energy efficiency, and controllability. However, PMs on the rotor are prone to centrifugal force, which may break their physical integrity, particularly at high-speed operation. Typically, PMs are bound with carbon fiber or retained by alloy sleeves on the rotor surface. This paper is concerned with the design of a rotor retaining sleeve for a 1.12-MW 18-kr/min PM machine; its electromagnetic performance is investigated by the 2-D finite-element method (FEM). Theoretical and numerical analyses of the rotor stress are carried out. For the carbon fiber protective measure, the stresses of three PM configurations and three pole filler materials are compared in terms of operating temperature, rotor speed, retaining sleeve thickness, and interference fit. Then, a new hybrid protective measure is proposed and analyzed by the 2-D FEM for operational speeds up to 22 kr/min (1.2 times the rated speed). The rotor losses and machine temperatures with the carbon fiber retaining sleeve and the hybrid retaining sleeve are compared, and the sleeve design is refined. Two rotors using both designs are prototyped and experimentally tested to validate the effectiveness of the developed techniques for PM machines. The developed retaining sleeve makes it possible to operate megawatt PM machines at high speeds of 22 kr/min. This opens doors for many high-power high-speed applications such as turbo-generator, aerospace, and submarine motor drives

    Effects of Design Parameters on Performance of Brushless Electrically Excited Synchronous Reluctance Generator

    Get PDF
    Permanent magnet synchronous generators, doubly fed induction generators, and traditional electrically excited synchronous generators are widely used for wind power applications, especially large offshore installations. In order to eliminate brushes and slip rings for improved reliability and maintenance-free operation, as well as to avoid costly permanent magnets, a novel brushless electrically excited synchronous reluctance generator having many outstanding advantages has been proposed in this paper. The fundamental operating principles, finite element analysis design studies and performance optimization aspects have been thoroughly investigated by simulations and experimentally under different loading conditions. The effects of different pole combinations and rotor dimensions on the magnetic coupling capacity of this machine have been specifically addressed and fully verified by off-line testing of the 6/2 pole and 8/4 pole prototypes with magnetic barrier reluctance rotor and a new hybrid cage rotor offering superior performance
    • …
    corecore