385 research outputs found

    Overexpression of β1 integrin contributes to polarity reversal and a poor prognosis of breast invasive micropapillary carcinoma

    Get PDF
    © Liu et al. Invasive micropapillary carcinoma (IMPC) of the breast is a highly aggressive breast cancer. Polarity reversal exemplified by cluster growth is hypothesized to contribute to the invasiveness and metastasis of IMPC. In this study, we demonstrate that levels of β1 integrin and Rac1 expression were greater in breast IMPC than in invasive breast carcinoma of no specific type and paraneoplastic benign breast tissue. We show that silencing β1 integrin expression using the β1 integrin inhibitor AIIB2 partially restored polarity in IMPC primary cell clusters and downregulated Rac1. Thus, overexpression of β1 integrin upregulates Rac1. Univariate analysis showed that overexpression of β1 integrin and Rac1 was associated with breast cancer cell polarity reversal, lymph node metastasis, and poor disease-free survival in IMPC patients. Multivariate analysis revealed that polarity reversal was an independent predictor of poor disease-free survival. These findings indicate that overexpression of β1 integrin and the resultant upregulation of Rac1 contribute to polarity reversal and metastasis of breast IMPC, and that β1 integrin and Rac1 could be potential prognostic biomarkers and targets for treatment of breast IMPC

    Motion for a Resolution tabled by Mr Barbi, Mr Vergeer, Mr Pedini, Mr Langes, Mr Penders, Mr Marck, Mrs Lenz, Mrs Walz, Mr Alber and Mrs Lentz-Cornette on behalf of the Group of the European People's Party (C-D Group) pursuant to Rule 47 of the Rules of Procedure on Nicaragua, Working Documents 1983-1984, Document 1-237/83, 26 April 1983

    Get PDF
    Peroxygenases offer an attractive means to address challenges in selective oxyfunctionalization chemistry. Despite this, their application in synthetic chemistry remains challenging due to their facile inactivation by the stoichiometric oxidant H2O2. Often atom-inefficient peroxide generation systems are required, which show little potential for large-scale implementation. Here, we show that visible-light-driven, catalytic water oxidation can be used for in situ generation of H2O2 from water, rendering the peroxygenase catalytically active. In this way, the stereoselective oxyfunctionalization of hydrocarbons can be achieved by simply using the catalytic system, water and visible light.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.BT/BiocatalysisBN/Greg Bokinsky La

    Differential Protein Expression in Small Intestinal Neuroendocrine Tumors and Liver Metastases

    Get PDF
    OBJECTIVE: Small intestinal neuroendocrine tumors (SI-NETs) are often detected after they have become metastatic. Using a novel protein array, we identified pathways important in SI-NET metastasis development in surgically resected patients. METHODS: Paired primary tumors and liver metastases from 25 patients undergoing surgical resection for metastatic SI-NETs were harvested. Extracted proteins were separated by sodium dodecyl sulfate gel and multiplex immunoblots were performed with 136 antibodies. Significant Analysis of Microarray was used to select for differentially expressed proteins. A tissue microarray was constructed from 27 archived specimens and stained by immunohistochemistry. RESULTS: Comparing primary SI-NETs with matched normal small-bowel mucosa, 9 proteins were upregulated and cyclin E was downregulated. The SI-NET liver metastases demonstrated upregulation of P-ERK and p27 but downregulation of CDK2 and CDC25B. When comparing primary SI-NET with their paired liver metastases, cyclin E demonstrated a significant upregulation in the liver metastasis. Tissue microarray demonstrated higher p38 expression and lower Cdc 25b expression in SI-NETs versus liver metastases and confirmed higher expression of p27 in liver metastases versus normal liver. CONCLUSIONS: Few studies have compared protein expression in paired primary and metastatic SI-NETs. Our findings reveal changes in a limited number of proteins, suggesting that these may be targets for therapy

    Spatial Distribution of the Attentional Blink

    Get PDF
    In the present study subjects viewed streams of rapid serially presented characters and searched for a target digit. After presentation of the target digit, a second target consisting of an orientation singleton (Experiment 1) or a second digit (Experiment 2) was presented at one of several distances from the first target. The attentional blink (AB) impaired performance on the second target with the effect being strongest at distances somewhat removed from the first target location. These results are consistent with lateral inhibition theory and help to resolve some fundamental questions about the spatial distribution of the AB

    DNA nanostructure-based magnetic beads for potentiometric aptasensing

    Get PDF
    In this work, a simple, general, and sensitive potentiometric platform is presented, which allows potentiometric sensing to be applied to any class of molecule irrespective of the analyte charge. DNA nanostructures are self-assembled on magnetic beads via the incorporation of an aptamer into a hybridization chain reaction. The aptamer target binding event leads to the disassembly of the DNA nanostructures, which results in a dramatic change in the surface charge of the magnetic beads. Such a surface charge change can be sensitively detected by a polycation-sensitive membrane electrode using protamine as an indicator. With an endocrine disruptor bisphenol A as a model, the proposed potentiometric method shows a wide linear range from 0.1 to 100 nM with a low detection limit of 80 pM (3 sigma). The proposed sensing strategy will lay a foundation for the development of potentiometric sensors for highly sensitive and selective detection of various targets

    Designing ultrafine lamellar eutectic structure in bimodal titanium alloys by semi-solid sintering

    Get PDF
    We report on a novel approach to design typical ultrafine lamellar eutectic structure in bimodal alloys fabricated by semi-solid sintering (SSS) of a eutectic mixture. In our work ultrafine lamellar eutectic structure was implemented by controlling the phase composition of eutectic reaction and consequently by regulating the structure of eutectic reaction-induced liquid phase through varying component number. Microstructure analysis indicate that although all SSSed alloys have the same three phase constitutions of bcc beta-Ti(Fe Co) and fcc Ti-2(Co Fe) the morphology and distribution of the eutectic structure transforms from limited length and minor quantity to partial fine alternating bcc beta-Ti and bcc Ti(Fe Co) lamellae and further to typical complete ultrafine alternating continuous lamellae in the SSSed ternary Ti-Fe-Co quaternary Ti-Fe-Co-Nb and quinary Ti-Fe-Co-Nb-Al alloys. Interestingly the SSSed Ti-Fe-Co-Nb-Al alloy presents a novel bimodal microstructure of coarse fcc Ti-2(Co Fe) surrounded by an ultrafine lamellar eutectic matrix containing ultrafine bcc beta-Ti and bcc Ti(Fe Co) lamellae. This bimodal microstructure exhibits ultra-high yield strength of 2050 MPa with plasticity in compression of 19.7% which exceed published values of equivalent materials. Our results provide a novel pathway for fabricating new-structure metallic alloys for high-performance structural applications. (C) 2017 Elsevier B.V. All rights reserved.</p

    Deformation of Surface Nanobubbles Induced by Substrate Hydrophobicity

    Get PDF
    Recent experimental measurements have shown that there exists a population of nanobubbles with different curvature radii, whereas both computer simulations and theoretical analysis indicated that the curvature radii of different nanobubbles should be the same at a given supersaturation. To resolve such inconsistency, we perform molecular dynamics simulations on surface nanobubbles that are stabilized by heterogeneous substrates either in the geometrical heterogeneity model (GHM) or in the chemical heterogeneity model (CHM) and propose that the inconsistency could be ascribed to the substrate-induced nanobubble deformation. We find that, as expected from theory and computer simulation, for either the GHM or the CHM, there exists a universal upper limit of contact angle for the nanobubbles, which is determined by the degree of supersaturation alone. By analyzing the evolution of the shape of nanobubbles as a function of substrate hydrophobicity that is controlled here by the liquid-solid interaction, two different origins of nanobubble deformation are identified. For substrates in the GHM, where the contact line is pinned by surface roughness, variation in the liquid-solid interaction changes only the location of the contact line and the measured contact angle; without causing a change in the nanobubble curvature. For substrates in the CHM, however, the liquid-solid interaction exerted by the bottom substrate can deform the vapor-liquid interface, resulting in variations in both the curvature of the vapor-liquid interface and the contact angle

    The redmapper galaxy cluster catalog from DES Science Verification data

    Get PDF
    We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to 150 {{deg}}2 of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited and contains 786 clusters with richness lambda \gt 20 (roughly equivalent to {M}{{500c}}≳ {10}14 {h}70-1 {M}o ) and 0.2\lt z\lt 0.9. The DR8 catalog consists of 26,311 clusters with 0.08\lt z\lt 0.6, with a sharply increasing richness threshold as a function of redshift for z≳ 0.35. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the {sigma }z/(1+z)~ 0.01 level for z≲ 0.7, rising to ~0.02 at z~ 0.9 in DES SV. We make use of Chandra and XMM X-ray and South Pole Telescope Sunyaev--Zeldovich data to show that the centering performance and mass--richness scatter are consistent with expectations based on prior runs of redMaPPer on SDSS data. We also show how the redMaPPer photo-z and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks

    Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8

    Get PDF
    By using a plasma jet (PJ) torch with 1.5 kW input power as an igniter, successful ignition for liquid-kerosene fueled combustion experiment was conducted in a direct-connected supersonic test facility. The incoming flow has total temperature of 950 K and local Mach number of 1.8, corresponding to Mach 4 flight condition. In this study, several optical techniques, including high speed photography, high speed schlieren photography, and planar laser scattering (PLS) technique, were combined to study the ignition process, flame propagation, and mixing features of liquid kerosene fuel with air around the cavity. The effect of fuel injection position, injection pressure, and feedstock gas on ignition performance has been analyzed. The results indicate that local mixing is a critical factor for ignition. It is also shown that the PJ torch with N-2 + H-2 feedstock is superior to the PJ torch with N-2 feedstock for the ignition of liquid-kerosene fuel. These results are valuable for the future optimization of kerosene-fueled scramjet engine when using a PJ torch as an igniter
    corecore