58 research outputs found

    Giving hope: best healing power in medicine

    Get PDF

    Multiple Axisymmetric Solutions for Axially Traveling Waves in Solid Rocket Motors

    Get PDF
    In this article, we consider the vorticoacoustic flowfield arising in a rightcylindrical porous chamber with uniform sidewall injection. Such configuration is often used to simulate the internal gaseous environment of a solid rocket motor (SRM). Assuming closed-closed acoustic conditions at both fore and aft ends of the domain, the introduction of small disturbances in the mean flow give rise to an axially traveling vortico-acoustically dominated wave structure that our study attempts to elucidate. Although this problem has been formulated before, it is reconsidered here in the context of WKB perturbation expansions in the reciprocal of the crossflow Reynolds number. This enables us to uncover multiple distinguished limits along with new asymptotic solutions that are presented for the first time. Among them are WKB approximations of type II and III that are systematically evaluated and discussed. The WKB solutions are shown to exhibit a peculiar singularity that warrants the use of matched asymptotic expansions to produce uniformly valid representations. Our solutions are obtained for any characteristic mean flow function satisfying Berman’s similarity condition for porous tubes. They are also derived to an arbitrary level of precision using a recursive formulation that can reproduce each of the asymptotic solutions to any prescribed order. Finally, our solutions are verified numerically over a wide range of physical parameters and through limiting process approximations

    Linear stability analysis of subaqueous bedforms using direct numerical simulations

    Get PDF
    We present results on the formation of ripples from linear stability analysis. The analysis is coupled with direct numerical simulations of turbulent open-channel flow over a fixed sinusoidal bed. The presence of the sediment bed is accounted for using the immersed boundary method. The simulations are used to extract the bed shear stress and consequently the sediment transport rate. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology and the sediment flux is obtained from the three-dimensional turbulent simulations. The stability analysis is performed on the Exner equation, whose input, the sediment flux, is provided from the simulations. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage. We also present results from a wave packet analysis using a one-dimensional Gaussian ridge

    On the Role of Sidewalls in the Transition From Straight to Sinuous Bedforms

    Get PDF
    We present results from direct numerical simulation on the transition from straight-crested to sinuous-crested bedforms. The numerical setup is representative of turbulent open channel flow over an erodible sediment bed at a shear Reynolds number of Reτ = 180. The immersed boundary method accounts for the presence of the bed. The simulations are two-way coupled such that the turbulent flow can erode and modify the bed, and in turn, the bed modifies the overlying flow. Coupling from the flow to the bed occurs through the Exner equation, while back coupling from the bed to the flow is achieved by imposing the no-slip and no-penetration condition at the immersed boundary. The simulation setup is similar to that by Zgheib et al. (2018a, https://doi.org/10.1002/2017JF004398) except for the presence of sidewalls to better mimic laboratory flume conditions. Sidewalls are observed to significantly increase bedform sinuosity. Key Points Lateral sidewalls significantly increase crestline sinuosity Influence of lateral domain extent on sinuosity is small but noticeable Influence of lateral extent is amplified in the presence of sidewall

    Gravity currents from non-axisymmetric releases

    Get PDF
    Les courants de gravitĂ©, Ă©coulements issus de la prĂ©sence d’un contraste de densitĂ© dans un fluide ou de la prĂ©sence de fluides de densitĂ©s diffĂ©rentes, sont rencontrĂ©s dans de nombreuses situations naturelles ou industrielles. Quelques exemples de courants de gravitĂ© sont les avalanches, les marĂ©es noires et les courants de turbiditĂ©. Certains courants de gravitĂ© peuvent reprĂ©senter un danger pour l’homme ou l’environnement, il est donc nĂ©cessaire de comprendre et de prĂ©dire leur dynamique. Cette thĂšse a pour objectif d’étudier l’évolution de courants de gravitĂ© de masse fixĂ©e, et notamment l’influence d’une forme initiale non-axisymĂ©trique sur la dynamique, effet jusque-lĂ  peu abordĂ© dans la littĂ©rature. Pour cela, une large gamme de paramĂštres est couverte, incluant le rapport de masse volumique entre le fluide ambiant et le fluide dans le courant, le rapport de forme initiale, la forme de la section horizontale de la colonne de fluide (circulaire, rectangulaire ou en forme de croix), le nombre de Reynolds (couvrant jusqu’à 4 ordres de grandeur) et la nature du fluide lourd (salin ou chargĂ© en particules). Deux campagnes d’expĂ©riences ont Ă©tĂ© menĂ©es et complĂ©tĂ©es par des simulations numĂ©riques hautement rĂ©solues. Le rĂ©sultat majeur est que la propagation du courant et le dĂ©pĂŽt de particules (lorsque particules il y a) sont fortement influencĂ©s par la forme initiale de la colonne de fluide. Dans le cas de la colonne initialement rectangulaire le courant se propage plus vite et dĂ©pose plus de particules dans la direction initialement de plus courte dimension. Ce comportement non-axisymĂ©trique est observĂ© dans une large gamme des paramĂštres Ă©tudiĂ©s ici. Pourtant les modĂšles analytiques existants et notamment le modĂšle dit de boĂźte (box model) qui prĂ©dit avec succĂšs le comportement des courants de gravitĂ©/turbiditĂ© dans les cas plan et axisymĂ©trique ne sont pas capables de reproduire ce phĂ©nomĂšne. C’est pourquoi une extension du box model a Ă©tĂ© dĂ©veloppĂ©e ici, et est en mesure de dĂ©crire la dynamique de courants de gravitĂ© de masse fixĂ©e dont la forme initiale est arbitraire. Le cas plus gĂ©nĂ©ral d'un courant de gravitĂ© Ă©voluant sur un plan inclinĂ© a Ă©tĂ© abordĂ© et une dynamique intĂ©ressante a Ă©tĂ© observĂ©e. ABSTRACT : Gravity currents are buoyancy driven flows that appear in a variety of situations in nature as well as industrial applications. Typical examples include avalanches, oil spills, and turbidity currents. Most naturally occurring gravity currents are catastrophic in nature, and therefore there is a need to understand how these currents advance, the speeds they can attain, and the range they might cover. This dissertation will focus on the short and long term evolution of gravity currents initiated from a finite release. In particular, we will focus attention to hitherto unaddressed effect of the initial shape on the dynamics of gravity currents. A range of parameters is considered, which include the density ratio between the current and the ambient (heavy, light, and Boussinesq currents), the initial height aspect ratio (height/radius), different initial cross-sectional geometries (circular, rectangular, plus-shaped), a wide range of Reynolds numbers covering 4 orders of magnitude, as well as conservative scalar and non-conservative (particle-driven) currents. A large number of experiments have been conducted with the abovementioned parameters, some of these experiments were complemented with highly-resolved direct numerical simulations. The major outcome is that the shape of the spreading current, the speed of propagation, and the final deposition profile (for particle-driven currents) are significantly influenced by the initial geometry, displaying substantial azimuthal variation. Especially for the rectangular cases, the current propagates farther and deposits more particles along the initial minor axis of the rectangular cross section. This behavior pertaining to non-axisymmetric release is robust, in the sense that it is observed for the aforementioned range of parameters, but nonetheless cannot be predicted by current theoretical models such as the box model, which has been proven to work in the context of planar and axisymmetric releases. To that end, we put forth a simple analytical model (an extension to the classical box model), well suited for accurately capturing the evolution of finite volume gravity current releases with arbitrary initial shapes. We further investigate the dynamics of a gravity current resulting from a finite volume release on a sloping boundary where we observe some surprising features

    Spreading of non-planar non-axisymmetric gravity and turbidity currents

    Get PDF
    The dynamics of non-axisymmetric turbidity currents is considered here. The study comprises a series of experiments for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of diameter 280<Dp<315Όm and density ρc=1007Kg/m3 is initially confined in a hollow cylinder at the center of a large tank filled with fresh water. Cylinders with four different cross-sections are examined: a circle, a plus-shape, a rectangle and a rounded rectangle in which the sharp corners are smoothened. The time evolution of the front is recorded as well the spatial distribution of the thickness of the final deposit via the use of a laser triangulation technique. The dynamics of the front and final deposit are significantly influenced by the initial geometry, displaying substantial azimuthal variation especially for the rectangular case where the current extends farther and deposits more particles along the initial minor axis of the rectangular cross section. Interestingly, this departure from axisymmetry cannot be predicted by current theoretical methods such as the Box Model. Several parameters are varied to assess the dependence on the settling velocity, initial height aspect ratio, local curvature and mixture density

    Propagation and deposition of non-circular finite release particle-laden currents

    Get PDF
    The dynamics of non-axisymmetric turbidity currents is considered here for a range of Reynolds numbers of O(10^4) when based on the initial height of the release. The study comprises a series of experiments and highly resolved simulations for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of mean diameter dp=300 Όm and mixture density ρc=1012 kg/m^3 is initially confined in a hollow cylinder at the centre of a large tank filled with fresh water. Cylinders with two different cross-sectional shapes, but equal cross-sectional areas, are examined: a circle and a rounded rectangle in which the sharp corners are smoothened. The time evolution of the front is recorded as well as the spatial distribution of the thickness of the final deposit via the use of a laser triangulation technique. The dynamics of the front and final deposit are significantly influenced by the initial geometry, displaying substantial azimuthal variation especially for the rectangular case where the current extends farther and deposits more particles along the initial minor axis of the rectangular cross-section. Several parameters are varied to assess the dependence on the settling velocity, initial height aspect ratio and volume fraction. Even though resuspension is not taken into account in our simulations, good agreement with experiments indicates that it does not play an important role in the front dynamics, in terms of velocity and extent of the current. However, wall shear stress measurements show that incipient motion of particles and particle transport along the bed are likely to occur in the body of the current and should be accounted to properly capture the final deposition profile of particles

    Dynamics of non-circular finite release gravity currents

    Get PDF
    The present work reports some new aspects of non-axisymmetric gravity currents obtained from laboratory experiments, fully resolved simulations and box models. Following the earlier work [Zgheib et al. 2014 Theor. Comput. Fluid Dyn. 28, 521-529] which demonstrated that gravity currents initiating from non-axisymmetric cross-sectional geometries do not become axisymmetric, nor do they retain their initial shape during the slumping and inertial phases of spreading, we show that such non-axisymmetric currents eventually reach a self-similar regime during which (i) the local front propagation scales as t^(1/2) as in circular releases and (ii) the non-axisymmetric front has a self-similar shape that primarily depends on the aspect ratio of the initial release. Complementary experiments of non-Boussinesq currents and top-spreading currents suggest that this self-similar dynamics is independent of the density ratio, vertical aspect ratio, wall friction, and Reynolds number, provided Re is large, i.e., Re≄Ο(10^4). The local instantaneous front Froude number obtained from the fully-resolved simulations is compared to existing models of Froude functions. The recently reported extended box model (EBM) is capable of capturing the dynamics of such non-axisymmetric flows. Here we use the EBM to propose a relation for the self-similar horizontal aspect ratio χ_∞ of the propagating front as a function of the initial horizontal aspect ratioχ_0, namely χ_∞=1+(1/3)ln χ_0. The experimental and numerical results are in good agreement with the proposed relation

    On the spreading and instability of gravity current fronts of arbitrary shape

    Get PDF
    Experiments, simulations and theoretical analysis were carried out to study the influence of geometry on the spreading of gravity currents. The horizontal spreading of three different intial planforms of initial release were investigated: an extended ellipse, a cross, and a circle. The experiments used a pulley system for a swift nearly instantaneous release. The case of the axisymmetric cylinder compared favorably with earlier simulations. We ran experiments for multiple aspect ratios for all three configurations. Perhaps the most intriguing of the three cases is the ``ellipse,'' which within a short period of release flipped the major and minor axes. This behavior cannot be captured by current theoretical methods (such as the Box Model). These cases have also been investigated using shallow water and direct numerical simulations. Also, in this study, we investigate the possibility of a Rayleigh-Taylor (RT) instability of the radially moving, but decelerating front. We present a simple theoretical framework based on the inviscid Shallow Water Equations. The theoretical results are supplemented and compared to highly resolved three-dimensional simulations with the Boussinesq approximation

    Propagation and deposition of non-circular finite release particle-laden currents

    Get PDF
    The dynamics of non-axisymmetric turbidity currents is considered here for a range of Reynolds numbers of O (104) when based on the initial height of the release. The study comprises a series of experiments and highly resolved simulations for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of mean diameter ̃=300m and mixture density ̃=1012kg/m3 is initially confined in a hollow cylinder at the centre of a large tank filled with fresh water. Cylinders with two different cross-sectional shapes, but equal cross-sectional areas, are examined: a circle and a rounded rectangle in which the sharp corners are smoothened. The time evolution of the front is recorded as well as the spatial distribution of the thickness of the final deposit via the use of a laser triangulation technique. The dynamics of the front and final deposits are significantly influenced by the initial geometry, displaying substantial azimuthal variation especially for the rectangular case where the current extends farther and deposits more particles along the initial minor axis of the rectangular cross section. Several parameters are varied to assess the dependence on the settling velocity, initial height aspect ratio, and volume fraction. Even though resuspension is not taken into account in our simulations, good agreement with experiments indicates that it does not play an important role in the front dynamics, in terms of velocity and extent of the current. However, wall shear stress measurements show that incipient motion of particles and particle transport along the bed are likely to occur in the body of the current and should be accounted to properly capture the final deposition profile of particles
    • 

    corecore