219 research outputs found

    Electric monopole transitions from low energy excitations in nuclei

    Get PDF
    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, ρ2\rho^2(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between ρ2\rho^2(E0) and isotopic shifts

    The Single-Particle Structure of Neutron-Rich Nuclei of Astrophysical Interest at the Ornl Hribf

    Full text link
    The rapid nuetron-capture process (r process) produces roughly half of the elements heavier than iron. The path and abundances produced are uncertain, however, because of the lack of nuclear strucure information on important neutron-rich nuclei. We are studying nuclei on or near the r-process path via single-nucleon transfer reactions on neutron-rich radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF). Owing to the difficulties in studying these reactions in inverse kinematics, a variety of experimental approaches are being developed. We present the experimental methods and initial results.Comment: Proceedings of the Third International Conference on Fission and Properties of Neutron-Rich Nucle

    β -delayed neutron emission from Ga 85

    Get PDF
    Decay of Ga85 was studied by means of β-neutron-γ spectroscopy. A pure beam of Ga85 was produced at the Holifield Radioactive Ion Beam Facility using a resonance ionization laser ion source and a high-resolution electromagnetic separator. The β-delayed neutron emission probability was measured for the first time, yielding 70(5)%. An upper limit of 0.1% for β-delayed two-neutron emission was also experimentally established for the first time. A detailed decay scheme including absolute γ-ray intensities was obtained. Results are compared with theoretical β-delayed emission models

    βdecays of \u3csup\u3e92\u3c/sup\u3eRb, \u3csup\u3e96gs\u3c/sup\u3eY, and \u3csup\u3e142\u3c/sup\u3eCs measured with the modular total absorption spectrometer and the influence of multiplicity on total absorption spectrometry measurements

    Get PDF
    Total absorption spectroscopy is a technique that helps obtain reliable β-feeding patterns of complex decays important for nuclear structure and astrophysics modeling as well as decay heat analysis in nuclear reactors. The need for improved measurements of β-feeding patterns from fission decay products has come to the forefront of experiments that use nuclear reactors as a source of antineutrinos. Here we present more detailed results, in particular the β-decay measurements of 96gsY, and demonstrate the impact of the β-delayed γ multiplicity on the overall efficiency of Modular Total Absorption Spectrometer used at Oak Ridge National Laboratory to study the decays of fission products abundant during a nuclear fuel cycle

    Excited states in As 82 studied in the decay of Ge 82

    Get PDF
    The excited states of odd-odd As82 are studied in the β decay of Ge82. An isotopically pure beam of Ga83 was produced at the Holifield Radioactive Ion Beam Facility using a resonance ionization laser ion source and high-resolution electromagnetic separation. The atoms of Ge82 are created after β-delayed neutron emission in the decay of Ga83. The number of Ge82 atoms is found by normalization to the 1348-keV γ ray. Detailed analysis of the decay scheme is compared with shell-model calculations with several commonly used fpg shell interactions

    Experimental study of the β decay of the very neutron-rich nucleus Ge 85

    Get PDF
    The β-decay properties of the very neutron-rich nucleus Ge85, produced in the proton-induced fission of U238, were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The level scheme of As523385 populated in Ge85βγ decay was reconstructed and compared to shell-model calculations. The investigation of the systematics of low-energy levels in N=52 isotones together with shell-model analysis allowed us to provide an estimate of the low-energy structure of the more exotic N=52 isotone Cu81

    Half-life of the superallowed β+ emitter Ne18

    Get PDF
    The half-life of Ne18 has been determined by detecting 1042-keV γ rays in the daughter F18 following the superallowed-Fermi β+ decay of samples implanted at the center of the 8πγ-ray spectrometer, a spherical array of 20 HPGe detectors. Radioactive Ne18 beams were produced on-line, mass-separated, and ionized using an electron-cyclotron-resonance ionization source at the ISAC facility at TRIUMF in Vancouver, Canada. This is the first high-precision half-life measurement of a superallowed Fermi β decay to utilize both a large-scale HPGe spectrometer and the isotope separation on-line technique. The half-life of Ne18, 1.6656 ± 0.0019 s, deduced following a 1.4σ correction for detector pulse pile-up, is four times more precise than the previous world average. As part of an investigation into potential systematic effects, the half-life of the heavier isotope Ne23 was determined to be 37.11 ± 0.06 s, a factor of 2 improvement over the previous precision. © 2007 The American Physical Society

    β-decay studies of the transitional nucleus Cu75 and the structure of Zn75

    Get PDF
    The β decay of Cu75 [t1/2=1.222(8)s] to levels in Zn75 was studied at the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory. The γγ and βγ data were collected at the Low-energy Radioactive Ion Beam Spectroscopy Station using the high-resolution isobar separator to obtain a purified Cu75 beam with a rate of over 2000 ions per second. The excited states in Zn75 have been identified for the first time. A total of 120 γ-ray transitions were placed in a level scheme containing 59 levels including two states above the neutron separation energy and a previously unknown 1/2- isomeric state at 127 keV. Spins and parities of several states were deduced and interpreted based on the observed β feeding and γ-decay pattern. © 2011 American Physical Society
    corecore