8 research outputs found
The potential for histone deacetylase (HDAC) inhibitors as cestocidal drugs
Background: Echinococcosis and cysticercosis are neglected tropical diseases caused by cestode parasites (family Taeniidae). Not only there is a small number of approved anthelmintics for the treatment of these cestodiases, but also some of them are not highly effective against larval stages, such that identifying novel drug targets and their associated compounds is critical. Histone deacetylase (HDAC) enzymes are validated drug targets in cancers and other diseases, and have been gaining relevance for developing new potential anti-parasitic treatments in the last years. Here, we present the anthelmintic profile for a panel of recently developed HDAC inhibitors against the model cestode Mesocestoides vogae (syn. M. corti).Methodology/principal findings: Phenotypic screening was performed on M. vogae by motility measurements and optical microscopic observations. Some HDAC inhibitors showed potent anthelmintic activities; three of them-entinostat, TH65, and TH92 -had pronounced anthelmintic effects, reducing parasite viability by ~100% at concentrations of ≤ 20 μM. These compounds were selected for further characterization and showed anthelmintic effects in the micromolar range and in a time- and dose-dependent manner. Moreover, these compounds induced major alterations on the morphology and ultrastructural features of M. vogae. The potencies of these compounds were higher than albendazole and the anthelmintic effects were irreversible. Additionally, we evaluated pairwise drug combinations of these HDAC inhibitors and albendazole. The results suggested a positive interaction in the anthelmintic effect for individual pairs of compounds. Due to the maximum dose approved for entinostat, adjustments in the dose regime and/or combinations with currently-used anthelmintic drugs are needed, and the selectivity of TH65 and TH92 towards parasite targets should be assessed.Conclusion, significance: The results presented here suggest that HDAC inhibitors represent novel and potent drug candidates against cestodes and pave the way to understanding the roles of HDACs in these parasites.Fil: Vaca, Hugo Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina. Universidad Nacional de Mar del Plata. Instituto de Investigaciones en Producción, Sanidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Producción, Sanidad y Ambiente; ArgentinaFil: Celentano, Ana M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Microbiología; ArgentinaFil: Toscanini, María Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Heimburg, Tino. No especifíca;Fil: Ghazy, Ehab. No especifíca;Fil: Zeyen, Patrik. No especifíca;Fil: Hauser, Alexander Thomas. Albert Ludwigs University of Freiburg; AlemaniaFil: Oliveira, Guilherme. Instituto Tecnológico Vale.; BrasilFil: Elissondo, María Celina. Universidad Nacional de Mar del Plata. Instituto de Investigaciones en Producción, Sanidad y Ambiente - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Producción, Sanidad y Ambiente; ArgentinaFil: Jung, Manfred. Albert Ludwigs University of Freiburg; AlemaniaFil: Sippl, Wolfgang. No especifíca;Fil: Camicia, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Rosenzvit, Mara Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin
Untersuchungen zur Synthese und biochemischen Charakterisierung von subtypselektiven Inhibitoren der humanen Histondeacetylasen HDAC8 und 10
Krebs ist eine Krankheit deren Therapie mit Nebenwirkungen und schlechten Prognosen verbunden ist. Somit ist die Erforschung neuer Therapien wichtig. Diese Arbeit leistet ihren Beitrag auf diesem Gebiet, durch die Entwicklung potenter Inhibitoren gegen die Histondeacetylasen HDAC8 & 10. HDACs spielen bei der Entstehung und dem Lebenszyklus verschiedener Krebszellen eine Rolle. Studien haben gezeigt, dass eine HDAC-Inhibition ein vielversprechender Ansatz zur Therapie diverser Tumorerkrankungen ist. In dieser Arbeit wurden potente und selektive Inhibitoren gegen HDAC8 & 10 synthetisiert, biochemisch charakterisiert und hinsichtlich ihrer Struktur-Wirkungs-Beziehungen untersucht. Die aktivsten und selektivsten Derivate wurden an ausgewählten Neuroblastom- (HDAC8) und Leukämiezellen (HDAC10) getestet und stellten sich hier als vielversprechende Kandidaten heraus. Ebenso wurden die synthetisierten Inhibitoren in Zytotoxizitätsassays an humanen HEK293 Zellen als nicht-toxisch klassifiziert.Cancer is a disease that affects more and more people, and the treatment is associated with side effects and partially poor prognoses. Therefore, it is important that new therapies are researched. This work contributes to this field by developing potent inhibitors for the histone deacetyases HDAC8 & 10. HDACs play a significant role in the development and life cycle of several cancer cells. Previous studies have shown that the inhibition of distinct HDACs is a promising approach for chemotherapy of various types of tumor diseases. In this work potent and selective HDAC8 and HDAC10 inhibitors were synthesized, biochemically characterized and examined concerning to their structure-activity relationships. The most active and selective derivatives were tested on selected neuroblastoma (HDAC8) and leukemia (HDAC10) cells and turned out to be potent and promising candidates. In addition, the synthesized inhibitors were classified as nontoxic in cytotoxicity assays using human HEK293 cells
Design, synthesis, and biological evaluation of dual targeting inhibitors of histone deacetylase 6/8 and bromodomain BRPF1
International audienceHistone modifying proteins, specifically histone deacetylases (HDACs) and bromodomains, have emerged as novel promising targets for anticancer therapy. In the current work, based on available crystal structures and docking studies, we designed dual inhibitors of both HDAC6/8 and the bromodomain and PHD finger containing protein 1 (BRPF1). Biochemical and biophysical tests showed that compounds 23a,b and 37 are nanomolar inhibitors of both target proteins. Detailed structure-activity relationships were deduced for the synthesized inhibitors which were supported by extensive docking and molecular dynamics studies. Cellular testing in acute myeloid leukemia (AML) cells showed only a weak effect, most probably because of the poor permeability of the inhibitors. We also aimed to analyse the target engagement and the cellular activity of the novel inhibitors by determining the protein acetylation levels in cells by western blotting (tubulin vs histone acetylation), and by assessing their effects on various cancer cell lines
Design, Synthesis and Biological Characterization of Histone Deacetylase 8 (HDAC8) Proteolysis Targeting Chimeras (PROTACs) with Anti-Neuroblastoma Activity
In addition to involvement in epigenetic gene regulation, histone deacetylases (HDACs) regulate multiple cellular processes through mediating the activity of non-histone protein substrates. The knockdown of HDAC8 isozyme is associated with the inhibition of cell proliferation and apoptosis enhancement in several cancer cell lines. As shown in several studies, HDAC8 can be considered a potential target in the treatment of cancer forms such as childhood neuroblastoma. The present work describes the development of proteolysis targeting chimeras (PROTACs) of HDAC8 based on substituted benzhydroxamic acids previously reported as potent and selective HDAC8 inhibitors. Within this study, we investigated the HDAC8-degrading profiles of the synthesized PROTACs and their effect on the proliferation of neuroblastoma cells. The combination of in vitro screening and cellular testing demonstrated selective HDAC8 PROTACs that show anti-neuroblastoma activity in cells.
Keywords: histone deacetylase
Design, synthesis and biological characterization of Histone Deacetylase 8 (HDAC8) Proteolysis Targeting Chimeras (PROTACs) with anti-neuroblastoma activity
In addition to involvement in epigenetic gene regulation, histone deacetylases (HDACs) regulate multiple cellular processes through mediating the activity of non-histone protein substrates. The knockdown of HDAC8 isozyme is associated with the inhibition of cell proliferation and apoptosis enhancement in several cancer cell lines. As shown in several studies, HDAC8 can be considered a potential target in the treatment of cancer forms such as childhood neuroblastoma. The present work describes the development of proteolysis targeting chimeras (PROTACs) of HDAC8 based on substituted benzhydroxamic acids previously reported as potent and selective HDAC8 inhibitors. Within this study, we investigated the HDAC8-degrading profiles of the synthesized PROTACs and their effect on the proliferation of neuroblastoma cells. The combination of in vitro screening and cellular testing demonstrated selective HDAC8 PROTACs that show anti-neuroblastoma activity in cells
Identification of HDAC10 Inhibitors that Modulate Autophagy in Transformed Cells
Histone deacetylases (HDACs) are a family of 18 epigenetic modifiers that fall into 4 classes. Histone deacetylase inhibitors (HDACi) are valid tools to assess HDAC functions. HDAC6 and HDAC10 belong to the class IIb subgroup of the HDAC family. The targets and biological functions of HDAC10 are ill-defined. This lack of knowledge is due to a lack of specific and potent HDAC10 inhibitors with cellular activity. Here, we have synthesized and characterized piperidine-4-acrylhydroxamates as potent and highly selective inhibitors of HDAC10. This was achieved by targeting the acidic gatekeeper residue Glu274 of HDAC10 with a basic piperidine moiety that mimics the interaction of the polyamine substrate of HDAC10. We have confirmed the binding modes of selected inhibitors using X-ray crystallography. Promising candidates were selected based on their specificity by in vitro profiling using recombinant HDACs. The most promising HDAC10 inhibitors 10c and 13b were tested for specificity in acute myeloid leukemia (AML) cells with the FLT3-ITD oncogene. By immunoblot experiments we assessed the hyperacetylation of histones and tubulin-α, which are class I and HDAC6 substrates, respectively. As validated test for HDAC10 inhibition we used flow cytometry assessing autolysosome formation in neuroblastoma and AML cells. We demonstrate that 10c and 13b inhibit HDAC10 with high specificity over HDAC6 and with no significant impact on class I HDACs. The accumulation of autolysosomes is not a consequence of apoptosis and 10c and 13b are not toxic for normal human kidney cells. These data show that 10c and 13b are nanomolar inhibitors of HDAC10 with high specificity. Thus, our new HDAC10 inhibitors are tools to identify the downstream targets and functions of HDAC10 in cells
Synthesis, Molecular Docking and Biological Characterization of Pyrazine Linked 2-Aminobenzamides as New Class I Selective Histone Deacetylase (HDAC) Inhibitors with Anti-Leukemic Activity
Class I histone deacetylases (HDACs) are key regulators of cell proliferation and they are frequently dysregulated in cancer cells. We report here the synthesis of a novel series of class-I selective HDAC inhibitors (HDACi) containing a 2-aminobenzamide moiety as a zinc-binding group connected with a central (piperazin-1-yl)pyrazine or (piperazin-1-yl)pyrimidine moiety. Some of the compounds were additionally substituted with an aromatic capping group. Compounds were tested in vitro against human HDAC1, 2, 3, and 8 enzymes and compared to reference class I HDACi (Entinostat (MS-275), Mocetinostat, CI994 and RGFP-966). The most promising compounds were found to be highly selective against HDAC1, 2 and 3 over the remaining HDAC subtypes from other classes. Molecular docking studies and MD simulations were performed to rationalize the in vitro data and to deduce a complete structure activity relationship (SAR) analysis of this novel series of class-I HDACi. The most potent compounds, including 19f, which blocks HDAC1, HDAC2, and HDAC3, as well as the selective HDAC1/HDAC2 inhibitors 21a and 29b, were selected for further cellular testing against human acute myeloid leukemia (AML) and erythroleukemic cancer (HEL) cells, taking into consideration their low toxicity against human embryonic HEK293 cells. We found that 19f is superior to the clinically tested class-I HDACi Entinostat (MS-275). Thus, 19f is a new and specific HDACi with the potential to eliminate blood cancer cells of various origins
Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity
Histone deacetylases (HDACs) are
important modulators of epigenetic
gene regulation and additionally control the activity of non-histone
protein substrates. While for HDACs 1–3 and 6 many potent selective
inhibitors have been obtained, for other subtypes much less is known
on selective inhibitors and the consequences of their inhibition.
The present report describes the development of substituted benzhydroxamic
acids as potent and selective HDAC8 inhibitors. Docking studies using
available crystal structures have been used for structure-based optimization
of this series of compounds. Within this study, we have investigated
the role of HDAC8 in the proliferation of cancer cells and optimized
hits for potency and selectivity, both in vitro and in cell culture.
The combination of structure-based design, synthesis, and in vitro
screening to cellular testing resulted in potent and selective HDAC8
inhibitors that showed anti-neuroblastoma activity in cellular testing