1,099 research outputs found
An O(1)-Approximation for Minimum Spanning Tree Interdiction
Network interdiction problems are a natural way to study the sensitivity of a
network optimization problem with respect to the removal of a limited set of
edges or vertices. One of the oldest and best-studied interdiction problems is
minimum spanning tree (MST) interdiction. Here, an undirected multigraph with
nonnegative edge weights and positive interdiction costs on its edges is given,
together with a positive budget B. The goal is to find a subset of edges R,
whose total interdiction cost does not exceed B, such that removing R leads to
a graph where the weight of an MST is as large as possible. Frederickson and
Solis-Oba (SODA 1996) presented an O(log m)-approximation for MST interdiction,
where m is the number of edges. Since then, no further progress has been made
regarding approximations, and the question whether MST interdiction admits an
O(1)-approximation remained open.
We answer this question in the affirmative, by presenting a 14-approximation
that overcomes two main hurdles that hindered further progress so far.
Moreover, based on a well-known 2-approximation for the metric traveling
salesman problem (TSP), we show that our O(1)-approximation for MST
interdiction implies an O(1)-approximation for a natural interdiction version
of metric TSP
Matroidal Degree-Bounded Minimum Spanning Trees
We consider the minimum spanning tree (MST) problem under the restriction
that for every vertex v, the edges of the tree that are adjacent to v satisfy a
given family of constraints. A famous example thereof is the classical
degree-constrained MST problem, where for every vertex v, a simple upper bound
on the degree is imposed. Iterative rounding/relaxation algorithms became the
tool of choice for degree-bounded network design problems. A cornerstone for
this development was the work of Singh and Lau, who showed for the
degree-bounded MST problem how to find a spanning tree violating each degree
bound by at most one unit and with cost at most the cost of an optimal solution
that respects the degree bounds.
However, current iterative rounding approaches face several limits when
dealing with more general degree constraints. In particular, when several
constraints are imposed on the edges adjacent to a vertex v, as for example
when a partition of the edges adjacent to v is given and only a fixed number of
elements can be chosen out of each set of the partition, current approaches
might violate each of the constraints by a constant, instead of violating all
constraints together by at most a constant number of edges. Furthermore, it is
also not clear how previous iterative rounding approaches can be used for
degree constraints where some edges are in a super-constant number of
constraints.
We extend iterative rounding/relaxation approaches both on a conceptual level
as well as aspects involving their analysis to address these limitations. This
leads to an efficient algorithm for the degree-constrained MST problem where
for every vertex v, the edges adjacent to v have to be independent in a given
matroid. The algorithm returns a spanning tree T of cost at most OPT, such that
for every vertex v, it suffices to remove at most 8 edges from T to satisfy the
matroidal degree constraint at v
The Submodular Secretary Problem Goes Linear
During the last decade, the matroid secretary problem (MSP) became one of the
most prominent classes of online selection problems. Partially linked to its
numerous applications in mechanism design, substantial interest arose also in
the study of nonlinear versions of MSP, with a focus on the submodular matroid
secretary problem (SMSP). So far, O(1)-competitive algorithms have been
obtained for SMSP over some basic matroid classes. This created some hope that,
analogously to the matroid secretary conjecture, one may even obtain
O(1)-competitive algorithms for SMSP over any matroid. However, up to now, most
questions related to SMSP remained open, including whether SMSP may be
substantially more difficult than MSP; and more generally, to what extend MSP
and SMSP are related.
Our goal is to address these points by presenting general black-box
reductions from SMSP to MSP. In particular, we show that any O(1)-competitive
algorithm for MSP, even restricted to a particular matroid class, can be
transformed in a black-box way to an O(1)-competitive algorithm for SMSP over
the same matroid class. This implies that the matroid secretary conjecture is
equivalent to the same conjecture for SMSP. Hence, in this sense SMSP is not
harder than MSP. Also, to find O(1)-competitive algorithms for SMSP over a
particular matroid class, it suffices to consider MSP over the same matroid
class. Using our reductions we obtain many first and improved O(1)-competitive
algorithms for SMSP over various matroid classes by leveraging known algorithms
for MSP. Moreover, our reductions imply an O(loglog(rank))-competitive
algorithm for SMSP, thus, matching the currently best asymptotic algorithm for
MSP, and substantially improving on the previously best
O(log(rank))-competitive algorithm for SMSP
- …