61 research outputs found

    Collective flow and the fluid behavior in p/d/3^3He+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    By varying the intrinsic initial geometry, the p/d/3^3He+Au collisions at the Relativistic Heavy Ion Collider (RHIC) provide a unique opportunity to understand the collective behavior in the small systems. In this paper, we employ the hybrid model iEBE-VISHNU with TRENTO initial conditions to study the collective flow and the fluid behavior in p/d/3^3He+Au collisions. With fine-tuned parameters, iEBE-VISHNU can describe the v2(pT)v_2(p_T) and v3(pT)v_3(p_T) data from the PHENIX and STAR collaborations. However, for these parameter sets tuned to fit the STAR data, the hydrodynamic simulations have already beyond their limits with the average Knudsen number ⟨Kn⟩\langle K_n \rangle obviously larger than one. Our calculations demonstrate that, for a meaningful evaluation of the fluid behavior in the small systems, model simulations should also pay attention to the validity range of hydrodynamics

    DBQ-SSD: Dynamic Ball Query for Efficient 3D Object Detection

    Full text link
    Many point-based 3D detectors adopt point-feature sampling strategies to drop some points for efficient inference. These strategies are typically based on fixed and handcrafted rules, making difficult to handle complicated scenes. Different from them, we propose a Dynamic Ball Query (DBQ) network to adaptively select a subset of input points according to the input features, and assign the feature transform with suitable receptive field for each selected point. It can be embedded into some state-of-the-art 3D detectors and trained in an end-to-end manner, which significantly reduces the computational cost. Extensive experiments demonstrate that our method can reduce latency by 30%-60% on KITTI and Waymo datasets. Specifically, the inference speed of our detector can reach 162 FPS and 30 FPS with negligible performance degradation on KITTI and Waymo datasets, respectively

    High-Qf value and temperature stable Zn2+-Mn4+ cooperated modified cordierite-based microwave and millimeter-wave dielectric ceramics

    Get PDF
    Cordierite-based dielectric ceramics with a lower dielectric constant would have significant application potential as dielectric resonator and filter materials for future ultra-low-latency 5G/6G millimeter-wave and terahertz communication. In this article, the phase structure, microstructure and microwave dielectric properties of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 (0 ≤ x ≤ 0.3) ceramics are studied by crystal structure refinement, scanning electron microscope (SEM), the theory of complex chemical bonds and infrared reflectance spectrum. Meanwhile, complex double-ions coordinated substitution and two-phase complex methods were used to improve its Q×f value and adjust its temperature coefficient. The Q×f values of Mg2Al4–2x(Mn0.5Zn0.5)2xSi5O18 single-phase ceramics are increased from 45,000 [email protected] GHz (x = 0) to 150,500 [email protected] GHz (x = 0.15) by replacing Al3+ with Zn2+-Mn4+. The positive frequency temperature coefficient additive TiO2 is used to prepare the temperature stable Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 composite ceramic. The composite ceramic of Mg2Al3.7(Mn0.5Zn0.5)0.3Si5O18-ywt%TiO2 (8.7 wt% ≤ y ≤ 10.6 wt%) presents the near-zero frequency temperature coefficient at 1225 °C sintering temperature: εr = 5.68, Q×f = 58,040 GHz, Ï„f = −3.1 ppm/°C (y = 8.7 wt%) and εr = 5.82, Q×f = 47,020 GHz, Ï„f = +2.4 ppm/°C (y = 10.6 wt%). These findings demonstrate promising application prospects for 5 G and future microwave and millimeter-wave wireless communication technologies
    • …
    corecore