331 research outputs found

    Streptomyces polyketides mediate bacteria–fungi interactions across soil environments

    Get PDF
    Although the interaction between prokaryotic and eukaryotic microorganisms is crucial for the functioning of ecosystems, information about the processes driving microbial interactions within communities remains scarce. Here we show that arginine-derived polyketides (arginoketides) produced by Streptomyces species mediate cross-kingdom microbial interactions with fungi of the genera Aspergillus and Penicillium, and trigger the production of natural products. Arginoketides can be cyclic or linear, and a prominent example is azalomycin F produced by Streptomyces iranensis, which induces the cryptic orsellinic acid gene cluster in Aspergillus nidulans. Bacteria that synthesize arginoketides and fungi that decode and respond to this signal were co-isolated from the same soil sample. Genome analyses and a literature search indicate that arginoketide producers are found worldwide. Because, in addition to their direct impact, arginoketides induce a secondary wave of fungal natural products, they probably contribute to the wider structure and functioning of entire soil microbial communities

    Morphology selection of nanoparticle dispersions by polymer media

    Get PDF
    A systematic theory of ultrathin polymer films as organizing media to achieve 2D nanoparticle arrangements was developed. The key physical variables to achieve nanoparticle dispersions and control morphology were determined.open727

    Moving beyond dosage and adherence: A protocol for capturing dimensions of active child engagement as a measure of fidelity for social-emotional learning interventions

    Get PDF
    Social-emotional competencies are important for school-readiness and can be supported through social-emotional learning (SEL) interventions in the preschool years. However, past research has demonstrated mixed efficacy of early SEL interventions across varied samples, highlighting a need to unpack the black box of which early interventions work, under what conditions, and for whom. In the present article we discuss the critical implementation component of active child engagement in an intervention as a potential point of disconnect between the intervention as designed and as implemented. Children who are physically present but unengaged during an intervention may lead to decreased average impacts of an intervention. Furthermore, measuring young children’s active engagement with an intervention may help to guide iterative intervention development. We propose a four-step protocol for capturing the multi-dimensional and varied construct of active child engagement in a SEL intervention. To illustrate the utility of the protocol, we apply it to data from a pilot study of a researcher-implemented, semi-structured block play intervention focused on supporting the development of SEL and math skills in preschoolers. We then present future directions for the integration of active participant engagement into the measurement of implementation of SEL interventions for young children

    Merged SAGE II, Ozone_cci and OMPS ozone profile dataset and evaluation of ozone trends in the stratosphere

    Get PDF
    In this paper, we present a merged dataset of ozone profiles from several satellite instruments: SAGE II on ERBS, GOMOS, SCIAMACHY and MIPAS on Envisat, OSIRIS on Odin, ACE-FTS on SCISAT, and OMPS on Suomi-NPP. The merged dataset is created in the framework of the European Space Agency Climate Change Initiative (Ozone_cci) with the aim of analyzing stratospheric ozone trends. For the merged dataset, we used the latest versions of the original ozone datasets. The datasets from the individual instruments have been extensively validated and intercompared; only those datasets which are in good agreement, and do not exhibit significant drifts with respect to collocated ground-based observations and with respect to each other, are used for merging. The long-term SAGE–CCI–OMPS dataset is created by computation and merging of deseasonalized anomalies from individual instruments. The merged SAGE–CCI–OMPS dataset consists of deseasonalized anomalies of ozone in 10° latitude bands from 90° S to 90° N and from 10 to 50 km in steps of 1 km covering the period from October 1984 to July 2016. This newly created dataset is used for evaluating ozone trends in the stratosphere through multiple linear regression. Negative ozone trends in the upper stratosphere are observed before 1997 and positive trends are found after 1997. The upper stratospheric trends are statistically significant at midlatitudes and indicate ozone recovery, as expected from the decrease of stratospheric halogens that started in the middle of the 1990s and stratospheric cooling

    Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system

    Get PDF
    A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The paper is addressed to scientists, policymakers, and funding agencies who need to have a global picture of the current state of the (diverse) carbon observations. We identify the current state of carbon observations, and the needs and notional requirements for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion of the ground-based observation networks required to reach the high spatial resolution for CO<sub>2</sub> and CH<sub>4</sub> fluxes, and for carbon stocks for addressing policy-relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over areas such as the southern oceans, tropical forests, and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote-sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO<sub>2</sub> proxy measurements such as radiocarbon in CO<sub>2</sub> and carbon-fuel combustion tracers. Additionally, a policy-relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. In addition, uncertainties for each observation data-stream should be assessed. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases interoperable, and on the calibration of each component of the system to agreed-upon international scales

    HIT family genes: FHIT but not PKCI-1/HINT produces altered transcripts in colorectal cancer

    Get PDF
    Forty-five colorectal adenocarcinomas were examined for alterations in the HIT family genes FHIT and PKCI-1/HINT by a combination of reverse transcriptase polymerase chain reaction and DNA sequencing. In all cases a single transcript corresponding to the reported sequence was detected using primers specific for the PKCI-1/HINT gene. In contrast multiple transcripts were detected using primers specific for the FHIT gene transcript. 6% (3/45) of tumours evinced no detectable expression of any FHIT transcript and a further 12% (6/45) produced only the normal full length transcripts. Ninety-six aberrant transcripts were characterized from the remaining tumours. Deviations from the normal full length sequence characterized included deletions, insertions of novel sequences, a point mutation as well as the usage of a putative alternate splice site in exon 10. Message variants were detected with approximately equal frequency in all tumour stages with the exception that templates with insertions were found solely in Dukes’ stage B tumours (P < 0.001). With the exception of the putative alternate splice site, aberrant transcripts were not detected in matched normal mucosa. These results suggest that members of the HIT family of genes are only selectively involved in tumorigenesis and that perturbation of FHIT gene expression is an early event in colorectal tumorigenesis. © 1999 Cancer Research Campaig

    Biosynthetic Gene Cluster for the Cladoniamides, Bis-Indoles with a Rearranged Scaffold

    Get PDF
    The cladoniamides are bis-indole alkaloids isolated from Streptomyces uncialis, a lichen-associated actinomycete strain. The cladoniamides have an unusual, indenotryptoline structure rarely observed among bis-indole alkaloids. I report here the isolation, sequencing, and annotation of the cladoniamide biosynthetic gene cluster and compare it to the recently published gene cluster for BE-54017, a closely related indenotryptoline natural product. The cladoniamide gene cluster differs from the BE-54017 gene cluster in gene organization and in the absence of one N-methyltransferase gene but otherwise contains close homologs to all genes in the BE-54017 cluster. Both gene clusters encode enzymes needed for the construction of an indolocarbazole core, as well as flavin-dependent enzymes putatively involved in generating the indenotryptoline scaffold from an indolocarbazole. These two bis-indolic gene clusters exemplify the diversity of biosynthetic routes that begin from the oxidative dimerization of two molecules of l-tryptophan, highlight enzymes for further study, and provide new opportunities for combinatorial engineering
    corecore