531 research outputs found
On the Mass-to-Light Ratio of Large Scale Structure
We examine the dependence of the mass-to-light (M/L) ratio of large-scale
structure on cosmological parameters, in models that are constrained to match
observations of the projected galaxy correlation function w(rp). For a sequence
of cosmological models with a fixed P(k) shape and increasing normalization
\sig8, we find parameters of the galaxy halo occupation distribution (HOD) that
reproduce SDSS measurements of w(rp) as a function of luminosity. Using these
HOD models we calculate mean M/L ratios as a function of halo mass and populate
halos of N-body simulations to compute M/L in larger scale environments,
including cluster infall regions. For all cosmological models, the M/L ratio in
high mass halos or high density regions is approximately independent of halo
mass or smoothing scale. However, the "plateau" value of M/L depends on \sig8
as well as \Omega_m, and it represents the universal mass-to-light ratio
only for models in which the galaxy correlation function is approximately
unbiased, i.e., with \sig8 ~ \sig8_gal. Our results for cluster mass halos
follow the trend M/L = 577(\Omega_m/0.3)(\sig8/0.9)^{1.7} h Msun/Lsun. Combined
with Carlberg et al.'s (1996) mean M/L ratio of CNOC galaxy clusters, this
relation implies (\sig8/0.9)(\Omega_m/0.3)^{0.6} = 0.75 +/- 0.06. M/L ratios of
clusters from the SDSS and CAIRNS surveys yield similar results. This
constraint is inconsistent with parameter values \Omega_m ~ 0.3, \sig8 ~ 0.9
favored by recent joint analyses of CMB measurements and other large-scale
structure data. We discuss possible resolutions, none of which seems entirely
satisfactory. Appendices present an improved formula for halo bias factors and
an improved analytic technique for calculating the galaxy correlation function
from a given cosmological model and HOD. (Abridged)Comment: Accepted to ApJ (v 630, no 2). Replaced with accepted versio
Power law correlations in galaxy distribution and finite volume effects from the Sloan Digital Sky Survey Data Release Four
We discuss the estimation of galaxy correlation properties in several volume
limited samples, in different sky regions, obtained from the Fourth Data
Release of the Sloan Digital Sky Survey. The small scale properties are
characterized through the determination of the nearest neighbor probability
distribution. By using a very conservative statistical analysis, in the range
of scales [0.5,~30] Mpc/h we detect power-law correlations in the conditional
density in redshift space, with an exponent \gamma=1.0 \pm 0.1. This behavior
is stable in all different samples we considered thus it does not depend on
galaxy luminosity. In the range of scales [~30,~100] Mpc/h we find evidences
for systematic unaveraged fluctuations and we discuss in detail the problems
induced by finite volume effects on the determination of the conditional
density. We conclude that in such range of scales there is an evidence for a
smaller power-law index of the conditional density. However we cannot
distinguish between two possibilities: (i) that a crossover to homogeneity
(corresponding to \gamma=0 in the conditional density) occurs before 100 Mpc/h,
(ii) that correlations extend to scales of order 100 Mpc/h (with a smaller
exponent 0 < \gamma <1). We emphasize that galaxy distributions in these
samples present large fluctuations at the largest scales probed, corresponding
to the presence of large scale structures extending up to the boundaries of the
present survey. Finally we discuss several differences between the behavior of
the conditional density in mock galaxy catalogs built from cosmological N-body
simulations and real data. We discuss some theoretical implications of such a
fact considering also the super-homogeneous features of primordial density
fields.Comment: 13 pages, 19 figures, to be publsihed in Astronomy and Astrophysic
The Spatial Clustering of ROSAT All-Sky Survey AGN: I. The cross-correlation function with SDSS Luminous Red Galaxies
We investigate the clustering properties of ~1550 broad-line active galactic
nuclei (AGNs) at =0.25 detected in the ROSAT All-Sky Survey (RASS) through
their measured cross-correlation function with ~46,000 Luminous Red Galaxies
(LRGs) in the Sloan Digital Sky Survey. By measuring the cross-correlation of
our AGN sample with a larger tracer set of LRGs, we both minimize shot noise
errors due to the relatively small AGN sample size and avoid systematic errors
due to the spatially varying Galactic absorption that would affect direct
measurements of the auto-correlation function (ACF) of the AGN sample.
The measured ACF correlation length for the total RASS-AGN sample
(=1.5 x 10^(44) erg/s) is r_0=4.3^{+0.4}_{-0.5} h^(-1) Mpc and
the slope \gamma=1.7^{+0.1}_{-0.1}. Splitting the sample into low and high L_X
samples at L_(0.5-10 keV)=10^(44) erg/s, we detect an X-ray luminosity
dependence of the clustering amplitude at the ~2.5 \sigma level. The low L_X
sample has r_0=3.3^{+0.6}_{-0.8} h^(-1) Mpc (\gamma=1.7^{+0.4}_{-0.3}), which
is similar to the correlation length of blue star-forming galaxies at low
redshift. The high L_X sample has r_0=5.4^{+0.7}_{-1.0} h^(-1) Mpc
(\gamma=1.9^{+0.2}_{-0.2}), which is consistent with the clustering of red
galaxies. From the observed clustering amplitude, we infer that the typical
dark matter halo (DMH) mass harboring RASS-AGN with broad optical emission
lines is log (M_DMH/(h^(-1) M_SUN)) =12.6^{+0.2}_{-0.3}, 11.8^{+0.6}_{-\infty},
13.1^{+0.2}_{-0.4} for the total, low L_X, and high L_X RASS-AGN samples,
respectively.Comment: The Astrophysical Journal, 713, 558 (2010), 16 pages, 11 figures, 4
table
Cosmological Parameters from Velocities, CMB and Supernovae
We compare and combine likelihood functions of the cosmological parameters
Omega_m, h and sigma_8, from peculiar velocities, CMB and type Ia supernovae.
These three data sets directly probe the mass in the Universe, without the need
to relate the galaxy distribution to the underlying mass via a "biasing"
relation. We include the recent results from the CMB experiments BOOMERANG and
MAXIMA-1. Our analysis assumes a flat Lambda CDM cosmology with a
scale-invariant adiabatic initial power spectrum and baryonic fraction as
inferred from big-bang nucleosynthesis. We find that all three data sets agree
well, overlapping significantly at the 2 sigma level. This therefore justifies
a joint analysis, in which we find a joint best fit point and 95 per cent
confidence limits of Omega_m=0.28 (0.17,0.39), h=0.74 (0.64,0.86), and
sigma_8=1.17 (0.98,1.37). In terms of the natural parameter combinations for
these data sigma_8 Omega_m^0.6 = 0.54 (0.40,0.73), Omega_m h = 0.21
(0.16,0.27). Also for the best fit point, Q_rms-ps = 19.7 muK and the age of
the universe is 13.2 Gyr.Comment: 8 pages, 5 figures. Submitted to MNRA
Nonlinear Peculiar-Velocity Analysis and PCA
We allow for nonlinear effects in the likelihood analysis of peculiar
velocities, and obtain ~35%-lower values for the cosmological density parameter
and for the amplitude of mass-density fluctuations. The power spectrum in the
linear regime is assumed to be of the flat LCDM model (h=0.65, n=1) with only
Om_m free. Since the likelihood is driven by the nonlinear regime, we "break"
the power spectrum at k_b=0.2 h/Mpc and fit a two-parameter power-law at k>k_b.
This allows for an unbiased fit in the linear regime. Tests using improved mock
catalogs demonstrate a reduced bias and a better fit. We find for the Mark III
and SFI data Om_m=0.35+-0.09$ with sigma_8*Om_m^0.6=0.55+-0.10 (90% errors).
When allowing deviations from \lcdm, we find an indication for a wiggle in the
power spectrum in the form of an excess near k~0.05 and a deficiency at k~0.1
h/Mpc --- a "cold flow" which may be related to a feature indicated from
redshift surveys and the second peak in the CMB anisotropy. A chi^2 test
applied to principal modes demonstrates that the nonlinear procedure improves
the goodness of fit. The Principal Component Analysis (PCA) helps identifying
spatial features of the data and fine-tuning the theoretical and error models.
We address the potential for optimal data compression using PCA.Comment: 15 pages, LaTex, in Mining the Sky, July 31 - August 4, 2000,
Garching, German
Extension and estimation of correlations in Cold Dark Matter models
We discuss the large scale properties of standard cold dark matter
cosmological models characterizing the main features of the power-spectrum, of
the two-point correlation function and of the mass variance. Both the
real-space statistics have a very well defined behavior on large enough scales,
where their amplitudes become smaller than unity. The correlation function, in
the range 0<\xi(r)<1, is characterized by a typical length-scale r_c, at which
\xi(r_c)=0, which is fixed by the physics of the early universe: beyond this
scale it becomes negative, going to zero with a tail proportional to -(r^{-4}).
These anti-correlations represent thus an important observational challenge to
verify models in real space. The same length scale r_c characterizes the
behavior of the mass variance which decays, for r>r_c, as r^{-4}, the fastest
decay for any mass distribution. The length-scale r_c defines the maximum
extension of (positively correlated) structures in these models. These are the
features expected for the dark matter field: galaxies, which represent a biased
field, however may have differences with respect to these behaviors, which we
analyze. We then discuss the detectability of these real space features by
considering several estimators of the two-point correlation function. By making
tests on numerical simulations we emphasize the important role of finite size
effects which should always be controlled for careful measurements.Comment: 18 pages, 27 figures, accepted for publication in Astronomy and
Astrophysic
The Spatial Clustering of ROSAT All-Sky Survey AGNs II. Halo Occupation Distribution Modeling of the Cross Correlation Function
This is the second paper of a series that reports on our investigation of the
clustering properties of AGNs in the ROSAT All-Sky Survey (RASS) through
cross-correlation functions (CCFs) with Sloan Digital Sky Survey (SDSS)
galaxies. In this paper, we apply the Halo Occupation Distribution (HOD) model
to the CCFs between the RASS Broad-line AGNs with SDSS Luminous Red Galaxies
(LRGs) in the redshift range 0.16<z<0.36 that was calculated in paper I. In our
HOD modeling approach, we use the known HOD of LRGs and constrain the HOD of
the AGNs by a model fit to the CCF. For the first time, we are able to go
beyond quoting merely a `typical' AGN host halo mass, M_h, and model the full
distribution function of AGN host dark matter halos. In addition, we are able
to determine the large-scale bias and the mean M_h more accurately. We explore
the behavior of three simple HOD models. Our first model (Model A) is a
truncated power-law HOD model in which all AGNs are satellites. With this
model, we find an upper limit to the slope (\alpha) of the AGN HOD that is far
below unity. The other two models have a central component, which has a step
function form, where the HOD is constant above a minimum mass, without (Model
B) or with (Model C) an upper mass cutoff, in addition to the truncated
power-law satellite component, similar to the HOD that is found for galaxies.
In these two models we find the upper limits of \alpha < 0.95 and \alpha < 0.84
for Model B and C respectively. Our analysis suggests that the satellite AGN
occupation increases slower than, or may even decrease with, M_h, in contrast
to the satellite's HODs of luminosity-threshold samples of galaxies, which, in
contrast, grow approximately as \propto M_h^\alpha with \alpha\approx 1. These
results are consistent with observations that the AGN fraction in groups and
clusters decreases with richness.Comment: 15 pages, 9 figures. ApJ in pres
Cosmological Density and Power Spectrum from Peculiar Velocities: Nonlinear Corrections and PCA
We allow for nonlinear effects in the likelihood analysis of galaxy peculiar
velocities, and obtain ~35%-lower values for the cosmological density parameter
Om and the amplitude of mass-density fluctuations. The power spectrum in the
linear regime is assumed to be a flat LCDM model (h=0.65, n=1, COBE) with only
Om as a free parameter. Since the likelihood is driven by the nonlinear regime,
we "break" the power spectrum at k_b=0.2 h/Mpc and fit a power law at k>k_b.
This allows for independent matching of the nonlinear behavior and an unbiased
fit in the linear regime. The analysis assumes Gaussian fluctuations and
errors, and a linear relation between velocity and density. Tests using proper
mock catalogs demonstrate a reduced bias and a better fit. We find for the
Mark3 and SFI data Om_m=0.32+-0.06 and 0.37+-0.09 respectively, with
sigma_8*Om^0.6 = 0.49+-0.06 and 0.63+-0.08, in agreement with constraints from
other data. The quoted 90% errors include cosmic variance. The improvement in
likelihood due to the nonlinear correction is very significant for Mark3 and
moderately so for SFI. When allowing deviations from LCDM, we find an
indication for a wiggle in the power spectrum: an excess near k=0.05 and a
deficiency at k=0.1 (cold flow). This may be related to the wiggle seen in the
power spectrum from redshift surveys and the second peak in the CMB anisotropy.
A chi^2 test applied to modes of a Principal Component Analysis (PCA) shows
that the nonlinear procedure improves the goodness of fit and reduces a spatial
gradient of concern in the linear analysis. The PCA allows addressing spatial
features of the data and fine-tuning the theoretical and error models. It shows
that the models used are appropriate for the cosmological parameter estimation
performed. We address the potential for optimal data compression using PCA.Comment: 18 pages, LaTex, uses emulateapj.sty, ApJ in press (August 10, 2001),
improvements to text and figures, updated reference
Gravitational Collapse with a Cosmological Constant
We consider the effect of a positive cosmological constant on spherical
gravitational collapse to a black hole for a few simple, analytic cases. We
construct the complete Oppenheimer-Snyder-deSitter (OSdS) spacetime, the
generalization of the Oppenheimer-Snyder solution for collapse from rest of a
homogeneous dust ball in an exterior vacuum. In OSdS collapse, the cosmological
constant may affect the onset of collapse and decelerate the implosion
initially, but it plays a diminishing role as the collapse proceeds. We also
construct spacetimes in which a collapsing dust ball can bounce, or hover in
unstable equilibrium, due to the repulsive force of the cosmological constant.
We explore the causal structure of the different spacetimes and identify any
cosmological and black hole event horizons which may be present.Comment: 7 pages, 10 figures; To appear in Phys. Rev.
- …